9 research outputs found
On daily interpolation of precipitation backed with secondary information
This paper investigates the potential impact of secondary information on rainfall mapping applying Ordinary Kriging. Secondary information tested is a natural area indicator, which is a combination of topographic features and weather conditions. Cross validation shows that secondary information only marginally improves the final mapping, indicating that a one-day accumulation time is possibly too short
Downscaling und multivariate Bias-Adjustierung ; Im Rahmen des BMVI-Expertennetzwerkes entwickelte Verfahren zum Postprocessing von Klimamodelldaten
Zusammenfassung:
Klimaprojektionsdaten liegen originĂ€r auf einem Gitter vor, das fĂŒr die Ableitung von AnpassungsmaĂnahmen an den Klimawandel vor Ort zu grob ist. Zudem sind Klimaprojektionsdaten eventuell mit systematischen Ungenauigkeiten (Bias) behaftet, die insbesondere bei der Analyse schwellenwertbezogener Indizes die Ergebnisse verfĂ€lschen können.
In diesem Bericht wird ein Verfahren zur multivariaten Bias-Adjustierung vorgestellt und bewertet. Multivariat bedeutet in diesem Zusammenhang, dass korrelierte Variablen gemeinsam adjustiert werden, was die Korrelation zwischen solchen Variablen erhÀlt und insbesondere in der Klimafolgenforschung von enormer Wichtigkeit ist.
Es schlieĂt sich die Vorstellung eines statistischen Verfahrens zur Generierung von höheren rĂ€umlichen Auflösungen der Modelldaten (Downscaling) an. Hierbei wird die originĂ€re Modellauflösung von ~ 11 km x 11 km unter Zuhilfenahme einer Hauptkomponentenanalyse (Principal Component Analysis), der Ermittlung statistischer Beziehungen zwischen den originĂ€ren Modelldaten und der ermittelten Hauptkomponenten und der Anwendung dieser Beziehungen auf hochauflösende Daten, zur Generierung eines Datensatz mit einer Zielauflösung von 5 km x 5 km genutzt.
Die Methode wurde im Rahmen des BMVI-Expertennetzwerkes âWissen â Können â Handelnâ entwickelt und auf ein Ensemble von Klimaprojektionsdaten angewendet. Die Ergebnisse liefern wesentliche BeitrĂ€ge in diesem Ressortforschungsprogramm, im Rahmen der Klimawirkungs- und Risikoanalyse 2021 und im Kontext der Deutschen Anpassungsstrategie an den Klimawandel sowie fĂŒr Beratungsleistungen des Deutschen Wetterdienstes.
Gridding of station observations by means of hybrid interpolation
Gridded maps of meteorological variables are needed for the evaluation of weather and climate models and for climate change monitoring. In order to produce them, values at locations where no observing stations are available need to be estimated from point-wise observations. For the interpolation of meteorological observations deterministic and stochastic methods are often combined. Deterministic methods can account for ancillary information such as elevation, continentality or satellite observations. Stochastic methods such as kriging reproduce observed values at the station locations and also account for spatial variability. In the first two studies of this thesis, a flexible interpolation method for the gridding of locally observed daily extreme temperatures is developed that also provides an optimal estimate of the interpolation ncertainty. In the third study, an observational dataset is created using this interpolation method and then applied to evaluate a climate simulation for Africa.
In the first study, the Regression-Kriging-Kriging (RKK) method is tested for the interpolation of daily minimum and maximum temperatures (Tmin and Tmax) in different regions in Europe. RKK accounts for elevation, continentality index and zonal mean temperature and is applicable in regions of differing station density and climate. The accuracy of RKK is compared to Inverse Distance Weighting, a common deterministic interpolation method, and to Ordinary Kriging, a common stochastic interpolation method. The first step in RKK is to use regression kriging, in which multiple linear regression accounts for topographical effects on the temperature field and kriging minimizes the regression error, to interpolate climatological means. In the second step daily deviations from the monthly climatology are interpolated using simple kriging. Owing to the large climatological differences across the investigation area the interpolation is performed in homogeneous subregions defined according to the Köppen-Geiger climate classification. Cross validation demonstrates the superiority of RKK over the simpler algorithms in terms of accuracy and preservation of spatial variability. The interpolation performance however strongly varies across Europe, being considerably higher over Central Europe (highest station density) than over Greenland (few stations along the coast line). This illustrates the strong impact of the station density on the accuracy of the interpolation result. Satellites provide comprehensive observations of climate variables such as land surface temperature (LST) and cloud cover (CC). However, LST is associated with high uncertainty (standard error ~ 1-2°C), preventing its direct application in meteorology and climatology. The second study investigates the usefulness of LST and CC as predictors for the gridding of daily Tmin and Tmax. The RKK algorithm is compared with similar interpolation methods that apply LST and CC in addition to the predictors used with the RKK algorithm. The investigation is conducted in two regions, Central Europe and the Iberian Peninsula, which differ strongly in average cloud cover (Central Europe is approximately 30% cloud free and the Iberian Peninsula approximately 60 % cloud free). RKKLST (in which monthly mean LST is used as an additional predictor) yields for Central Europe no clear improvement over RKK, yet it reduces the interpolation error over the Iberian Peninsula. This finding can be explained by the higher percentage of cloud free pixels over that region in summer which enables a more robust determination of monthly mean LST. Adding a regression step for daily anomalies (using the predictor CC) yields the RKRK method and improves the preservation of spatial variability over the Iberian Peninsula. Moreover, a successive reduction of the station number (from 140 to 10 stations) reveals an increasing superiority of RKKLST and RKRK over RKK in both regions.
The application of a gridded observational dataset for climate monitoring or climate model validation requires knowledge of the uncertainties associated with the dataset. The estimation of the interpolation uncertainty, here the inter quartile range is the used uncertainty measure, is therefore an important issue within the frame of this thesis. By means of cross validation it is shown that the largest uncertainties occur in regions of low station density (e.g. Greenland), in mountainous regions and along coastlines (in these regions model evaluation results should be interpreted carefully). The magnitude of the interpolation error mainly depends on the station density, while the complexity of terrain has substantially less influence. On average over all regions and investigation days the target precision of the uncertainty estimate is reached. However, on local scales and for single days it can be clearly over- or underestimated. The application of satellite-derived predictors (LST and CC) yields no noteworthy improvement of the uncertainty estimate.
In the last study two regional climate simulations for Africa using the ERA-Interim driven COSMO-CLM (CCLM) model at two different horizontal resolutions (0.22° and 0.44°) are validated. It is assessed whether observed patterns and statistical properties of daily Tmin and Tmax are correctly represented in the model. The ERA-Interim reanalysis and a specially created observational dataset are used as reference. The observational dataset is generated by applying the RKRK algorithm (developed within the second study). The investigations show an occasionally large bias in Tmin and Tmax. The hemispheric summers are generally too warm and the temporal variability in temperature is too high, particularly over extra tropical Africa. The diurnal temperature range is overestimated by about 2°C in the northern subtropics but underestimated by about 2°C over large parts of the African tropics. CCLM reproduces the observed frequency distribution of daily Tmin and Tmax in all African climate regions, and the extreme values in the lower percentiles (5, 10, 20%) for Tmin are well simulated. The higher percentiles (80, 90, 95%) for Tmax are however overestimated by 2-5°C. For both Tmin and Tmax the 0.22° simulation is on average 0.5°C warmer than the 0.44° simulation. Additionally, the higher percentiles are about 1°C warmer for both Tmin and Tmax in the higher resolution run, while the lower percentiles in both runs match very well. Although the temperature pattern is represented in more detail along the coastlines and in topographically complex regions, the higher resolution simulation yields no qualitative improvement.
To summarize, the choice of the appropriate algorithm mainly depends on the interpolation conditions. In cases where the station density is high across the target region and the predictor space is adequately covered by observing stations, the computationally less demanding RK algorithm should be preferred. In regions where the station density is low the more robust RKRK algorithm should be the first choice. Due to the strong physical relation of both CC and LST to Tmin and Tmax the missing information is at least partially compensated for. The estimation of the interpolation uncertainty could be improved by applying a normal score transformation to the data prior to a kriging step. This is because the kriging assumption that the increments of the variable of interest are second order stationary can be approximately met by a normal score transformation.Rasterkarten meteorologischer Variablen sind in der Meteorologie und Klimatologie von groĂer Bedeutung. Einerseits werden sie zur Evaluation von Wetter- und Klimamodellen benötigt, andererseits werden sie zur Ăberwachung des Klimas verwendet. Zu diesem Zweck mĂŒssen aus punktuell gemessenen Werten SchĂ€tzungen fĂŒr die nicht beprobten FlĂ€chen berechnet werden. FĂŒr die Interpolation von meteorologischen Variablen werden oftmals stochastische und deterministische Methoden miteinander kombiniert. Stochastische Methoden (z.B. Kriging) reproduzieren beobachtete Werte an den Messpunkten und ĂŒbertragen deren Werte unter BerĂŒcksichtigung der rĂ€umlichen VariabilitĂ€t auf die gesamte FlĂ€che. Deterministische Methoden berĂŒcksichtigen z.B. Hilfsvariablen wie Höhe, KontinentalitĂ€tsindex oder Satellitendaten bei der Interpolation. Das Ziel der vorliegenden Arbeit ist es, zunĂ€chst eine flexible Interpolationsmethode fĂŒr die Rasterung punktuell gemessener tĂ€glicher Temperaturextrema zu entwickeln, welche eine optimale Angabe des Vertrauensintervalls der interpolierten Werte ermöglicht. AnschlieĂend soll mit Hilfe dieser Interpolationsmethode ein Beobachtungsdatensatz erstellt und fĂŒr die Evaluation eines Klimamodells eingesetzt werden.
In einer ersten Studie wird der Regressions-Kriging-Kriging (RKK) Algorithmus zur Interpolation tĂ€glicher Minimum- und Maximum- Temperaturen (Tmin und Tmax) in verschiedenen Regionen Europas getestet. RKK berĂŒcksichtigt Höhe, KontinentalitĂ€tsindex sowie zonale Mitteltemperatur und ist flexibel in Regionen unterschiedlicher Stationsdichte und unterschiedlichen Klimas einsetzbar. RKK wird mit Inverse Distance Weighting, einer gĂ€ngigen deterministischen Interpolationsmethode, sowie Ordinary Kriging, einer gĂ€ngigen stochastischen Interpolationsmethode, verglichen. Bei RKK wird zunĂ€chst Regressions-Kriging zur Interpolation von Klimawerten verwendet, wobei die Beeinflussung des Temperaturfeldes durch GelĂ€ndeeigenschaften mit Hilfe multipler linearer Regression berĂŒcksichtigt wird. AnschlieĂend werden tĂ€gliche Abweichungen zur Klimatologie mittels Simple Kriging interpoliert. Aufgrund der groĂen klimatischen Unterschiede innerhalb des Untersuchungsgebietes erfolgt die Interpolation in homogenen Subregionen, deren Einteilung an die Köppen-Geiger Klimazonenklassifikation angelehnt ist. Kreuzvalidierung verdeutlicht die Ăberlegenheit von RKK gegenĂŒber den beiden ĂŒbrigen Interpolationsmethoden bezĂŒglich Genauigkeit (RMSE) und Varianzerhaltung. Die QualitĂ€t der Interpolation ist rĂ€umlich sehr unterschiedlich. So liefert die Interpolation ĂŒber der Region Mitteleuropa (wo die Stationsdichte am höchsten ist) deutlich bessere Resultate als ĂŒber der Region Grönland (wo nur einzelne Stationen entlang der KĂŒste vorhanden sind). Dies verdeutlicht den starken Einfluss der Stationsdichte auf die QualitĂ€t des Interpolationsprodukts.
Satelliten ermöglichen eine flĂ€chendeckende Beobachtung von Klimavariablen wie der ErdoberflĂ€chentemperatur (LST) und der Wolkenbedeckung (CC). LST Messungen sind mit erheblichen Unsicherheiten behaftet (Standardfehler ~ 1-2°C), weshalb eine direkte Anwendung in Meteorologie und Klimatologie nicht sinnvoll ist. In einer weiteren Studie wird daher der Frage nachgegangen, ob der Einsatz von LST bzw. CC als PrĂ€diktoren in Regionen geringer Stationsdichte zu einer Verbesserung des Interpolationsprodukts fĂŒhrt. Um dies zu untersuchen wird der RKK Algorithmus mit Ă€hnlichen Algorithmen verglichen, welche zudem LST bzw. CC als PrĂ€diktoren verwenden. Die Untersuchung wird fĂŒr zwei Regionen (Mitteleuropa und Iberische Halbinsel) durchgefĂŒhrt, welche sich insbesondere in der durchschnittlichen Wolkenbedeckung unterscheiden (Mitteleuropa rund 30% und Iberische Halbinsel rund 60% wolkenfrei). Der RKKLST Algorithmus (verwendet monatlich gemittelte LST als zusĂ€tzlichen PrĂ€diktor) erzielt fĂŒr Mitteleuropa zwar keine nennenswerte Verbesserung des Produkts, verzeichnet allerdings ĂŒber der Iberischen Halbinsel vor allem im Juli einen geringeren Interpolationsfehler als RKK. Dies liegt an der höheren Prozentzahl wolkenfreier Pixel (ca. 60%) wĂ€hrend der Sommermonate ĂŒber der Iberischen Halbinsel, die Regressionsschrittes fĂŒr tĂ€gliche Anomalien (RKRK), wobei CC als PrĂ€diktor dient, fĂŒhrt
insbesondere ĂŒber der Iberischen Halbinsel zu einer Verbesserung der Varianzerhaltung. DarĂŒber hinaus zeigt eine sukzessive Verringerung der Stationszahl (von 140 auf 10 Stationen) ĂŒber beiden Testregionen eine zunehmende Ăberlegenheit von RKKLST und RKRK gegenĂŒber RKK.
Wird ein Beobachtungsdatensatz zur Ăberwachung des Klimas oder zur Evaluation eines Klimamodells angewendet, ist es entscheidend, dessen Unsicherheiten zu kennen. Ein groĂes Augenmerk dieser Arbeit liegt daher auf der AbschĂ€tzung der Interpolationsunsicherheit, wobei der Interquartilbereich als Fehlermass verwendet wird. Mittels Kreuzvalidierung kann gezeigt werden, dass sowohl in Regionen geringer Stationsdichte (z.B. Grönland) wie auch ĂŒber dem Gebirge und entlang der KĂŒste die gröĂten Interpolationsfehler auftreten (hier sollten z.B. Modellevaluationsergebnisse vorsichtig interpretiert werden). Die GröĂe der von den Algorithmen erzeugten Fehlerintervalle wird hauptsĂ€chlich von der Stationsdichte beeinflusst, wĂ€hrend die Topographie einen deutlich geringen Einfluss hat. Zwar wird die Zielgenauigkeit der Fehlerintervalle im Mittel ĂŒber alle Stationen und Untersuchungstage fĂŒr sĂ€mtliche Algorithmen nĂ€herungsweise erreicht, jedoch wird das Fehlerintervall lokal beziehungsweise an Einzeltagen zum Teil betrĂ€chtlich ĂŒberbzw. unterschĂ€tzt. Die Verwendung satellitengestĂŒtzter PrĂ€diktoren (LST und CC) fĂŒhrt zu keiner nennenswerten Verbesserung der Fehlerintervalle.
In einer letzten Studie werden zwei regionale Klimasimulationen des an den lateralen Grenzen durch ERA-Interim Reanalysedaten angetriebenen COSMO-CLM (CCLM) Modells unterschiedlicher horizontaler Auflösung (0.22° und 0.44°) fĂŒr Afrika evaluiert. Es wird geprĂŒft, ob beobachtete Muster, sowie statistische Eigenschaften tĂ€glicher Tmin und Tmax Werte adĂ€quat reproduziert werden. Als Referenz dienen dabei die ERA-Interim Reanalyse und ein eigens hierfĂŒr erstellter Beobachtungsdatensatz. Der Beobachtungsdatensatz wird mit Hilfe des in der zweiten Studie entwickelten RKRK Algorithmus erstellt. Die Untersuchungen zeigen einen teils erheblichen Bias zwischen Modell und Beobachtungen. Die hemisphĂ€rischen Sommer sind im CCLM generell zu warm und die zeitliche VariabilitĂ€t der Temperatur ist insbesondere ĂŒber den auĂertropischen Gebieten zu hoch. Der tĂ€gliche Temperaturbereich wird vom Modell ĂŒber den nördlichen Subtropen um ca. 2°C unterschĂ€tzt, ĂŒber weiten Teilen der Tropen hingegen um rund 2°C ĂŒberschĂ€tzt. CCLM reproduziert beobachtete HĂ€ufigkeitsverteilungen tĂ€glicher Tmin und Tmax Werte in allen afrikanischen Klimaregionen gut. Die Extremwerte in den unteren Perzentilen (5, 10, 20%) fĂŒr Tmin werden ausgezeichnet simuliert, die oberen Perzentile (80, 90, 95%) fĂŒr Tmax werden allerdings um 2-5°C ĂŒberschĂ€tzt. Die 0.22° Skala des CCLM Modells ist im Mittel fĂŒr Tmin und Tmax um rund 0.5°C wĂ€rmer als die 0.44° Skala. Auch die oberen Perzentile sind auf der 0.22° Skala um jeweils ca. 1°C wĂ€rmer, wĂ€hrend die unteren Perzentile beider Skalen gut ĂŒbereinstimmen. Zwar werden die Temperaturfelder auf der 0.22° Skala entlang der KĂŒste und ĂŒber topographisch komplexen Regionen detaillierter dargestellt, allerdings kann durch die Anwendung der höher auflösenden Simulation keine qualitative Verbesserung festgestellt werden.
Zusammenfassend kann gesagt werden, dass die Wahl des geeigneten Algorithmus primĂ€r von den Interpolationsbedingungen abhĂ€ngt. Ist die Stationsdichte ĂŒber der Zielregion hoch und der Merkmalsraum adĂ€quat abgedeckt, sollte der weniger rechenaufwendige RK Algorithmus verwendet werden. In Regionen geringer Stationsdichte ist der robustere RKRK Algorithmus vorzuziehen. Dank der physikalischen Beziehung zwischen LST bzw. CC und Tmin und Tmax wird zumindest ein Teil der fehlenden Information kompensiert. Die normal score Transformation der Daten vor jedem Kriging-Schritt fĂŒhrte zu einer verbesserten AbschĂ€tzung der Interpolationsunsicherheit
Evaluation of daily maximum and minimum 2-m temperatures as simulated with the Regional Climate Model COSMO-CLM over Africa
The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8) to capture the statistics of daily maximum
and minimum 2-m temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22° and 0.44°), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution
gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008â2010) is created using the regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature
and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90th percentile
of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern
and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2°C across arid areas, yet overestimated by around 2°C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the
simulated frequency distributions capture more than 80% of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly across the
African tropics. Thus, the representation of processes controlling Tmax including cloud-solar interaction, radiation processes, and ground heat fluxes should be improved by further model developments. The higher-resolution simulation (0.22°) is on average about 0.5°C warmer with a
more pronounced overestimation of the higher percentiles of Tmax, and yields no clear benefit over the lower-resolution simulation
New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS)
This study presents daily high-resolution (5 km Ă 5 km) grids of mean, minimum, and maximum temperature and relative humidity for Germany and its catchment areas, from 1951 to 2015. These observational datasets (HYRAS) are based upon measurements gathered for Germany and its neighbouring countries, in total more than 1300 stations, gridded in two steps: first, the generation of a background field, using non-linear vertical temperature profiles, and then an inverse distance weighting scheme to interpolate the residuals, subsequently added onto the background field. The modified Euclidian distances used integrate elevation, distance to the coast, and urban heat island (UHI) effect. A direct station-grid comparison and cross-validation yield low errors for the temperature grids over most of the domain and greater deviations in more complex terrain. The interpolation of relative humidity is more uncertain due to its inherent spatial inhomogeneity and indirect derivation using dew point temperature. Compared with other gridded observational datasets, HYRAS benefits from its high resolution and captures complex topographic effects. HYRAS improves upon its predecessor by providing datasets for additional variables (minimum and maximum temperature), integrating temperature inversions, maritime influence and UHI effect, and representing a larger area. With a long-term observational dataset of multiple meteorological variables also including precipitation, various climatological analyses are possible. We present long-term historical climate trends and relevant indices of climate extremes, pointing towards a significantly warming climate over Germany, with no significant change in total precipitation. We also evaluate extreme events, specifically the summer heat waves of 2003 and 2015
A satellite-based surface radiation climatology derived by combining climate data records and near-real-time data
This study presents a method for adjusting long-term climate data records (CDRs) for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS). Recently, a 23-year long (1983â2005) continuous SIS CDR has been generated based on the visible channel (0.45â1 ÎŒm) of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983â2005) and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards) were tested. A procedure to detect shift inhomogeneities in the extended data record (1983âpresent) was applied that combines the Standard Normal Homogeneity Test (SNHT) and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN) and about 50 stations of the Global Energy Balance Archive (GEBA) over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of any segment between two break points to the last segment (2006âpresent). Corrections are applied to the most significant breaks that can be related to satellite changes. This study focuses on the European region, but the methods can be generalized to other regions. To account for seasonal dependence of the mean-shifts the correction was performed independently for each calendar month. In comparison to the ground-based reference the homogenised data record shows an improvement over the original data record in terms of anomaly correlation and bias. In general the method can also be applied for the adjustment of satellite datasets addressing other variables to bridge the gap between CDRs and near-real-time data
Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial
International audienceAbstract Background Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO 2 ) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO 2 with patientsâ outcome. Methods Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA (TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 8 h until day 3. Hypoxemia was defined as PaO 2 â300 mmHg. Mortality and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months. Results 1418 patients were included in the analysis. The mean age was 64â±â14 years, and 292 patients (20.6%) were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia was 69 mmHg (Risk Ratio, RRâ=â1.009, 95% CI 0.93â1.09), and for hyperoxemia was 195 mmHg (RRâ=â1.006, 95% CI 0.95â1.06). The time exposure, i.e., the area under the curve (PaO 2 -AUC), for hyperoxemia was significantly associated with mortality ( p =â0.003). Conclusions In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients. Trial registration : clinicaltrials.gov NCT02908308 , Registered September 20, 2016