15 research outputs found

    Shape, spin and baryon fraction of clusters in the MareNostrum Universe

    Get PDF
    The MareNostrum Universe is one of the largest cosmological SPH simulation done so far. It consists of 102431024^3 dark and 102431024^3 gas particles in a box of 500 h1h^{-1} Mpc on a side. Here we study the shapes and spins of the dark matter and gas components of the 10,000 most massive objects extracted from the simulation as well as the gas fraction in those objects. We find that the shapes of objects tend to be prolate both in the dark matter and gas. There is a clear dependence of shape on halo mass, the more massive ones being less spherical than the less massive objects. The gas distribution is nevertheless much more spherical than the dark matter, although the triaxiality parameters of gas and dark matter differ only by a few percent and it increases with cluster mass. The spin parameters of gas and dark matter can be well fitted by a lognormal distribution function. On average, the spin of gas is 1.4 larger than the spin of dark matter. We find a similar behavior for the spins at higher redshifts, with a slightly decrease of the spin ratios to 1.16 at z=1.z=1. The cosmic normalized baryon fraction in the entire cluster sample ranges from Yb=0.94Y_b = 0.94, at z=1z=1 to Yb=0.92Y_b = 0.92 at z=0z=0. At both redshifts we find a slightly, but statistically significant decrease of YbY_b with cluster mass.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical Journa

    Dwarf Dark Matter Halos

    Full text link
    We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses 10^7-10^9 Msun/h. We find that the density profiles of relaxed dwarf halos are well fitted by the NFW profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model while the latter is well fitted by a lognormal distribution with lambda_0 = 0.042 and sigma_lambda = 0.63. We estimate the distribution of concentrations for halos in mass range that covers six orders of magnitude from 10^7 Msun/h to 10^13} Msun/h, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z = 0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~ 35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6 x 10^9 Msun/h to 10^13 Msun/h and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just down-scaled versions of the large halos. They are cuspy and, as expected, more concentrated. They have the same spin parameter distribution and follow the same mass function that was measured for large halos.Comment: Accepted to be pusblished by ApJ, 12 pages, 8 figures, LaTeX (documentclass preprint2). Differences with respect to the previous submission are: (i) abstract was modified slightly to make it more transparent to the reader, (ii) an extra figure has been added, and (3) some minor modifications to the main text were also don

    Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    Get PDF
    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen–Zatsepin–Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory

    How far do they go? The outer structure of dark matter halos

    Full text link
    We study the density profiles of collapsed galaxy-size dark matter halos with masses 1e11-5e12 Msun focusing mostly on the halo outer regions from the formal virial radius Rvir up to 5-7Rvir. We find that isolated halos in this mass range extend well beyond Rvir exhibiting all properties of virialized objects up to 2-3Rvir: relatively smooth density profiles and no systematic infall velocities. The dark matter halos in this mass range do not grow as one naively may expect through a steady accretion of satellites, i.e., on average there is no mass infall. This is strikingly different from more massive halos, which have large infall velocities outside of the virial radius. We provide accurate fit for the density profile of these galaxy-size halos. For a wide range (0.01-2)Rvir of radii the halo density profiles are fit with the approximation rho=rho_s exp(-2n[x^{1/n}-1])+rho_m, where x=r/r_s, rho_m is the mean matter density of the Universe, and the index n is in the range n=6-7.5. These profiles do not show a sudden change of behavior beyond the virial radius. For larger radii we combine the statistics of the initial fluctuations with the spherical collapse model to obtain predictions for the mean and most probable density profiles for halos of several masses. The model give excellent results beyond 2-3 formal virial radii.Comment: 15 pages, 10 figures, submitted to Ap

    The dependence on environment of Cold Dark Matter Halo properties

    Full text link
    High-resolution LCDM cosmological N-body simulations are used to study the properties of galaxy-size dark halos in different environments (cluster, void, and "field"). Halos in clusters and their surroundings have a median spin parameter ~1.3 times lower, and tend to be more spherical and to have less aligned internal angular momentum than halos in voids and the field. For halos in clusters the concentration parameters decrease on average with mass with a slope of ~0.1; for halos in voids these concentrations do not change with mass. For masses <5 10^11 M_sh^-1, halos in clusters are on average ~30-40% more concentrated and have ~2 times higher central densities than halos in voids. When comparing only parent halos, the differences are less pronounced but they are still significant. The Vmax-and Vrms-mass relations are shallower and more scattered for halos in clusters than in voids, and for a given Vmax or Vrms, the mass is smaller at z=1 than at z=0 in all the environments. At z=1, the differences in the halo properties with environment almost dissapear, suggesting this that the differences were stablished mainly after z~1. The halos in clusters undergo more dramatic changes than those in the field or the voids. The differences with environment are owing to (i) the dependence of halo formation time on environment, and (ii) local effects as tidal stripping and the tumultuos histories that halos suffer in high-density regions. We calculate seminumerical models of disk galaxy evolution in halos with the properties found for the different environments. For a given disk mass, the galaxy disks have higher surface density, larger Vd,max and secular bulge-to-disk ratio, lower gas fraction, and are redder as one goes from cluster to void environments, in rough agreement with observations. (abridged)Comment: 28 pages, 13 figures included. To appear in The Astrophysical Journa
    corecore