59 research outputs found

    ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany

    Get PDF
    Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century

    Projektentwicklung

    No full text

    Clinical H MRS in childhood neurometabolic diseases-part 1: technique and age-related normal spectra

    No full text
    Despite its vigorous ability to detect and measure metabolic disturbances, H MRS remains underutilized in clinical practice. MRS increases diagnostic yield and provides therapeutic measures. Because many inborn metabolic errors are now treatable, early diagnosis is crucial to prevent or curb permanent brain injury. Therefore, patients with known or suspected inborn metabolic errors stand to benefit from the addition of MRS. With education and practice, all neuroradiologists can perform and interpret MRS notwithstanding their training and prior experience. In this two-part review, we cover the requisite concepts for clinical MRS interpretation including technical considerations and normal brain spectral patterns based on age, location, and methodology

    Clinical H MRS in childhood neurometabolic diseases - part 2: MRS signatures

    No full text
    Proton MRS of the brain provides the ability to gather direct information regarding the metabolic status of the brain at the time of MRI. Although selective vulnerability of brain tissue may yield distinct imaging patterns in neurometabolic disorders, it is not uncommon for the brain MRI to be normal, nonspecific, or show ambiguous abnormalities among several possible diagnoses, metabolic, or otherwise. This review highlights childhood neurometabolic diseases in which H MRS may show diagnostic or suggestive metabolic profiles without complicated acquisition or postprocessing techniques

    Algorithms for segmenting cerebral time-of-flight magnetic resonance angiograms from volunteers and anemic patients

    No full text
    To evaluate six cerebral arterial segmentation algorithms in a set of patients with a wide range of hemodynamic characteristics to determine real-world performance. Time-of-flight magnetic resonance angiograms were acquired from 33 subjects: normal controls ( ), sickle cell disease ( ), and non-sickle anemia ( ) using a 3 Tesla Philips Achieva scanner. Six segmentation algorithms were tested: (1) Otsu\u27s method, (2) K-means, (3) region growing, (4) active contours, (5) minimum cost path, and (6) U-net machine learning. Segmentation algorithms were tested with two region-selection methods: global, which selects the entire volume; and local, which iteratively tracks the arteries. Five slices were manually segmented from each patient by two readers. Agreement between manual and automatic segmentation was measured using Matthew\u27s correlation coefficient (MCC). Median algorithm segmentation times ranged from 0.1 to 172.9 s for a single angiogram versus 10 h for manual segmentation. Algorithms had inferior performance to inter-observer vessel-based ( , ) and voxel-based ( , ) measurements. There were significant differences between algorithms ( ) and between patients ( ). Post-hoc analyses indicated (1) local minimum cost path performed best with vessel-based ( , ) and voxel-based ( , ) analyses; and (2) higher vessel-based performance in non-sickle anemia ( ) and lower voxel-based performance in sickle cell ( ) compared with normal controls. All reported MCCs are medians. The best-performing algorithm (local minimum cost path, voxel-based) had 9.59% worse performance than inter-observer agreement but was 3 orders of magnitude faster. Automatic segmentation was non-inferior in patients with sickle cell disease and superior in non-sickle anemia

    Cerebral Lactate Concentration in Neonatal Hypoxic-Ischemic Encephalopathy: In Relation to Time, Characteristic of Injury, and Serum Lactate Concentration

    No full text
    BackgroundCerebral lactate concentration can remain detectable in neonatal hypoxic-ischemic encephalopathy (HIE) after hemodynamic stability. The temporal resolution of regional cerebral lactate concentration in relation to the severity or area of injury is unclear. Furthermore, the interplay between serum and cerebral lactate in neonatal HIE has not been well defined. The study aims to describe cerebral lactate concentration in neonatal HIE in relation to time, injury, and serum lactate.Design/methodsFifty-two newborns with HIE undergoing therapeutic hypothermia (TH) were enrolled. Magnetic resonance imaging and spectroscopy (MRI + MR spectroscopy) were performed during and after TH at 54.6 ± 15.0 and 156 ± 57.6 h of life, respectively. Severity and predominant pattern of injury was scored radiographically. Single-voxel 1H MR spectra were acquired using short-echo (35 ms) PRESS sequence localized to the basal ganglia (BG), thalamus (Thal), gray matter (GM), and white matter. Cerebral lactate concentration was quantified by LCModel software. Serum and cerebral lactate concentrations were plotted based on age at time of measurement. Multiple comparisons of regional cerebral lactate concentration based on severity and predominant pattern of injury were performed. Spearman’s Rho was computed to determine correlation between serum lactate and cerebral lactate concentration at the respective regions of interest.ResultsOverall, serum lactate concentration decreased over time. Cerebral lactate concentration remained low for less severe injury and decreased over time for more severe injury. Cerebral lactate remained detectable even after TH. During TH, there was a significant higher concentration of cerebral lactate at the areas of injury and also when injury was more severe. However, these differences were no longer observed after TH. There was a weak correlation between serum lactate and cerebral lactate concentration at the BG (rs = 0.3, p = 0.04) and Thal (rs = 0.35, p = 0.02). However, in infants with moderate–severe brain injury, a very strong correlation exists between serum lactate and cerebral lactate concentration at the BG (rs = 0.7, p = 0.03), Thal (rs = 0.9 p = 0.001), and GM (rs = 0.6, p = 0.04) regions.ConclusionCerebral lactate is most significantly different between regions and severity of injury during TH. There is a moderate correlation between serum and cerebral lactate concentration measured in the deep gray nuclei during TH. Differences in injury and altered regional cerebral metabolism may account for these differences

    Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants

    Get PDF
    Thalamic structural co-variation with cortical regions has been demonstrated in preterm infants, but its relationship to cortical function and severity of non-cystic white matter injury (non-cystic WMI) is unclear. The relationship between thalamic morphology and both cortical network synchronization and cortical structural connectivity has not been established. We tested the hypothesis that in preterm neonates, thalamic volume would correlate with primary cortical visual function and microstructural integrity of cortico-cortical visual association pathways. A total of 80 term-equivalent preterm and 44 term-born infants underwent high-resolution structural imaging coupled with visual functional magnetic resonance imaging or diffusion tensor imaging. There was a strong correlation between thalamic volume and primary visual cortical activation in preterms with non-cystic WMI (r = 0.81, p-value = 0.001). Thalamic volume also correlated strongly with interhemispheric cortico-cortical connectivity (splenium) in preterm neonates with a relatively higher severity of non-cystic WMI (p-value < 0.001). In contrast, there was lower correlation between thalamic volume and intrahemispheric cortico-cortical connectivity, including the inferior longitudinal fasciculus and inferior frontal orbital fasciculus. This study shows distinct temporal overlap in the disruption of thalamo-cortical and interhemispheric cortico-cortical connectivity in preterm infants suggesting developmental synergy between thalamic morphology and the emergence of cortical networks in the last trimester

    A new MRI tag-based method to non-invasively visualize cerebrospinal fluid flow

    No full text
    PURPOSE: Abnormal cerebrospinal fluid (CSF) dynamics can produce a number of significant clinical problems to include hydrocephalus, loculated areas within the ventricles or subarachnoid spaces as well as impairment of normal CSF movement between the cranial and spinal compartments that can result in a cerebellar ectopia and hydrosyringomyelia. Thus, assessing the patency of fluid flow between adjacent CSF compartments non-invasively by magnetic resonance imaging (MRI) has definite clinical value. Our objective was to demonstrate that a novel tag-based CSF imaging methodology offers improved contrast when compared with a commercially available application. METHODS: In a prospective study, ten normal healthy adult subjects were examined on 3T magnets with time-spatial labeling inversion pulse (Time-SLIP) and a new tag-based flow technique-time static tagging and mono-contrast preservation (Time-STAMP). The image contrast was calculated for dark-untagged CSF and bright-flowing CSF. We tested the results with the D\u27Agostino and Pearson normality test and Friedman\u27s test with Dunn\u27s multiple comparison correction for significance. Separately 96 pediatric patients were evaluated using the Time-STAMP method. RESULTS: In healthy adults, contrasts were consistently higher with Time-STAMP than Time-SLIP (p \u3c 0.0001, in all ROI comparisons). The contrast between untagged CSF and flowing tagged CSF improved by 15 to 34%. In both healthy adults and pediatric patients, CSF flow between adjacent fluid compartments was demonstrated. CONCLUSIONS: Time-STAMP provided images with higher contrast than Time-SLIP, without diminishing the ability to visualize qualitative CSF movement and between adjacent fluid compartments

    Metabolic Maturation of White Matter Is Altered in Preterm Infants

    Get PDF
    <div><p>Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used <i>in vivo</i> magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340–370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.</p></div
    • …
    corecore