82 research outputs found

    Active and passive control of zinc phthalocyanine photodynamics

    Get PDF
    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of both of these control experiments is the same: to enhance the yield of the functional pathway and to minimize loss channels. The aim of the active control experiments is to increase the intersystem crossing yield in ZnPc, which is important for application in photodynamic therapy (PDT). Pulse shaping allowed an improvement in triplet to singlet ratio of 15% as compared to a transform-limited pulse. This effect is ascribed to a control mechanism that utilizes multiphoton pathways to higher-lying states from where intersystem crossing is more likely to occur. The passive control experiments are performed on ZnPc derivatives deposited onto TiO2, serving as a model system of a dye-sensitized solar cell (DSSC). Modification of the anchoring ligand of the molecular structure resulted in an increased rate for electron injection into TiO2 and slower back electron transfer, improving the DSSC efficiency

    Design trade-offs in amorphous indium gallium zinc oxide thin film transistor based bio-signal sensing front-ends

    Get PDF
    With the advent of the Internet of things, wearable sensing devices are gaining importance in our daily lives for applications like vital signal monitoring during sport and health diagnostics. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) fabricated on flexible large-area substrates are a very interesting platform to build wearable sensing devices due to their flexibility, conformability to the human body, and low cost. For this paper four different bio-signal sensing front-end circuits based on a-IGZO TFTs are designed, fabricated, measured and compared, focusing on three performance indicators which are in a trade-off: power efficiency factor (PEF), area occupation and input impedance. Considering a 200 Hz bandwidth, the measured PEF varies between 4.7 × 105 and 7.5 × 106. The area occupation spans from 4.2 to 37 mm2, while the input impedance at 1 Hz varies from 5.3 to 55.3 MΩ. The front-ends based on diode-load amplifiers are compact but have the lowest input impedance and need external capacitors; a front-end exploiting positive feedback impedance boosting has the highest input impedance and is fully integrated on foil, but occupies the largest area

    A conformable active matrix LED display

    Get PDF
    Conformable and stretchable displays can be integrated on complex surfaces. Such a display can assume the shape of a conformed surface by simultaneous multi-dimensional stretching and bending. Such technology provides new opportunities in the field of display applications, for example wearable displays integrated or embedded in a textile or onto complex surfaces in automotive interiors. In this work we present a conformable active matrix display using LEDs mounted on an amorphous Indium-Gallium-Zinc Oxide (a-IGZO) TFT backplane. A two-transistor and one capacitor (2T-1C) pixel engine based backplane, fabricated on polyimide substrate, is used to drive LEDs. Rigid LED pixels are connected via meandered copper film. The meander interconnections have been optimized with respect to their electrical and mechanical properties to provide a display with a 2 mm pitch between the pixels and good conformability. At an operating supply voltage of 7 V, the average brightness of the display exceeds 170 cd/m2

    Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures

    Get PDF
    With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.</p

    Variation in neurosurgical management of traumatic brain injury

    Get PDF
    Background: Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods: A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results: The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion: Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    Manipulating charge separation dynamics of zinc phthalocyanine based TiO2 films through asymmetrical push-pull structures

    Get PDF
    Zinc phthalocyanine (ZnPc) based dye-sensitized solar cells (DSSCs) that exhibit light absorption in the near IR and excellent chemical stability show great potential for efficient light harvesting and light to electrical energy conversion. However, they have exhibited poor device efficiencies (< 1%) for a long time [1]. Only recently efficiencies up to ∼5% have been realized [2,3]. An important tool in the development towards higher efficiencies involves replacing a symmetric phthalocyanine by an asymmetric equivalent [3] with one electron pulling group (anchoring onto the TiO2) and three electron pushing groups (Fig. 1(a)). This clearly suggests that such an asymmetrical push-pull structure supports light-induced forward electron transfer (from the ZnPc core into the TiO2) and prevents back electron transfer. However, ultrafast photodynamics studies have not been reported so far

    A First Step towards Determining the Ionic Content in Water with an Integrated Optofluidic Chip Based on Near-Infrared Absorption Spectroscopy

    Get PDF
    In this work, we present a feasibility study of integrated optofluidic chips to measure the ionic content in water using differential absorption spectroscopy. The second overtone of the OH-stretch vibration of water is used as indicator for both the type and concentration of the dissolved ions. The optofluidic chips are based on silicon nitride (TripleX) containing Mach–Zehnder interferometers (MZI) with two 5 cm sensing paths for the sample and reference arms, respectively. Simulations show that, theoretically, the determination of both the type and concentration of a mixture of four electrolytes is possible with the techniques presented. However, the performance of the chips deviated from the expected results due to the insufficient reproducibility and precision in the fabrication process. Therefore, at this early stage, the chips presented here could only determine the ion concentration, but not differentiate between the different ion types. Still, this work represents the first steps towards the realization of an online and real-time sensor of ionic content in water

    Active-matrix IGZO array with printed thermistor for large-area thermal imaging

    No full text
    \u3cp\u3eThermal imagers conventionally consist of a suspended sensing element on support structure with patterned thermal detection layer to get good thermal isolation between sensor elements[1]. Large area and wearable thermal imaging applications require cost effective fabrication, robustness and a flexible form factor. We present a 16×16 active-matrix IGZO array integrated with a screen printed thermistor on a thin and flexible substrate. Screen printing of the thermistor together with a flat-panel compatible backplane technology provides a cost effective and scalable route to large area thermal imaging. Unlike conventional focal plane arrays and microbolometers, in this work no suspended structures are used. Thus, the challenge is to get sufficient thermal separation between the imager elements, in particular when the thermistor is a single, non-structured layer extending across the entire backplane. The thermal response is determined by the thermal detection layer and the substrate, limiting the thermal response time τ = C/G, with C the thermal capacitance and G the thermal conductance. We show that by integration on thin polyimide film the thermal time constant improves by a factor of 30 compared to the same thermistor array on glass. In addition, we show that the thermal response can be further improved by reducing the thickness of (mainly) the printed thermistor layer. A stretchable form factor can be achieved through the formation of thermistor islands, connected by meander-shaped interconnects, enabling large area thermal imaging on conformal surfaces down to millimeter spatial resolution.\u3c/p\u3

    Design trade-offs in amorphous indium gallium zinc oxide thin film transistor based bio-signal sensing front-ends

    No full text
    With the advent of the Internet of things, wearable sensing devices are gaining importance in our daily lives for applications like vital signal monitoring during sport and health diagnostics. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) fabricated on flexible large-area substrates are a very interesting platform to build wearable sensing devices due to their flexibility, conformability to the human body, and low cost. For this paper four different bio-signal sensing front-end circuits based on a-IGZO TFTs are designed, fabricated, measured and compared, focusing on three performance indicators which are in a trade-off: power efficiency factor (PEF), area occupation and input impedance. Considering a 200 Hz bandwidth, the measured PEF varies between 4.7 × 105 and 7.5 × 106. The area occupation spans from 4.2 to 37 mm2, while the input impedance at 1 Hz varies from 5.3 to 55.3 MΩ. The front-ends based on diode-load amplifiers are compact but have the lowest input impedance and need external capacitors; a front-end exploiting positive feedback impedance boosting has the highest input impedance and is fully integrated on foil, but occupies the largest area
    corecore