67 research outputs found

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    Addressing global disparities in blood pressure control: perspectives of the International Society of Hypertension

    Get PDF
    Raised blood pressure (BP) is the leading cause of preventable death in the world. Yet, its global prevalence is increasing, and it remains poorly detected, treated, and controlled in both high- and low-resource settings. From the perspective of members of the International Society of Hypertension based in all regions, we reflect on the past, present, and future of hypertension care, highlighting key challenges and opportunities, which are often region-specific. We report that most countries failed to show sufficient improvements in BP control rates over the past three decades, with greater improvements mainly seen in some high-income countries, also reflected in substantial reductions in the burden of cardiovascular disease and deaths. Globally, there are significant inequities and disparities based on resources, sociodemographic environment, and race with subsequent disproportionate hypertension-related outcomes. Additional unique challenges in specific regions include conflict, wars, migration, unemployment, rapid urbanization, extremely limited funding, pollution, COVID-19-related restrictions and inequalities, obesity, and excessive salt and alcohol intake. Immediate action is needed to address suboptimal hypertension care and related disparities on a global scale. We propose a Global Hypertension Care Taskforce including multiple stakeholders and societies to identify and implement actions in reducing inequities, addressing social, commercial, and environmental determinants, and strengthening health systems implement a well-designed customized quality-of-care improvement framework

    Emergence and evolution of the renin–angiotensin–aldosterone system

    Get PDF
    The renin–angiotensin–aldosterone system (RAAS) is not the sole, but perhaps the most important volume regulator in vertebrates. To gain insights into the function and evolution of its components, we conducted a phylogenetic analysis of its main related genes. We found that important parts of the system began to appear with primitive chordates and tunicates and that all major components were present at the divergence of bony fish, with the exception of the Mas receptor. The Mas receptor first appears after the bony-fish/tetrapod divergence. This phase of evolutionary innovation happened about 400 million years ago. We found solid evidence that angiotensinogen made its appearance in cartilage fish. The presence of several RAAS genes in organisms that lack all the components shows that these genes have had other ancestral functions outside of their current role. Our analysis underscores the utility of sequence comparisons in the study of evolution. Such analyses may provide new hypotheses as to how and why in today's population an increased activity of the RAAS frequently leads to faulty salt and volume regulation, hypertension, and cardiovascular diseases, opening up new and clinically important research areas for evolutionary medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00109-012-0894-z) contains supplementary material, which is available to authorized users

    Alternative renin-angiotensin system

    No full text
    The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT(1) receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT(2) receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT(2) receptor have opposing effects to the classical AT(1) receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system

    Transkriptionelle Regulation des AT2-Rezeptors und des ATBP durch Östrogene

    No full text
    • …
    corecore