74 research outputs found

    Perturbations in growth trajectory due to early diet affect age-related deterioration in performance

    Get PDF
    Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence. Using three-spined sticklebacks (Gasterosteus aculeatus), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls. However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation. Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season. Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation. These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction

    Turing Award lecture

    No full text

    Book Reviews

    No full text

    Consequences of mating and predation risk for longevity in a freshwater snail: abstinence makes the heart beat longer

    No full text
    Senescence is not a static property of an individual or population, but rather it is a dynamic process that may be influenced by environmental conditions. This can occur in at least two ways: in the long-term across multiple generations, and in the short-term via phenotypic plasticity. The former has attracted a lot of attention, both theoretically and empirically; the latter has lagged behind. To determine whether two important environmental variables (predation risk and mate availability) affect the pattern of actuarial senescence (i.e., the increase in mortality with age), we reared 30 full-sib families of the simultaneously hermaphroditic freshwater snail Physa acuta under four different environmental conditions and tracked individuals until death. Individuals were reared in a 2x2 factorial experiment that manipulated the non-lethal presence of chemical cues from predatory crayfish (presence/absence) and the opportunity to mate with an unrelated partner (mated/not mated). Snails that receive a partner reproduce by outcrossing, while those that remain in isolation can reproduce by self-fertilization. We compared the cumulative survival curves to test for an effect of predation risk and mating. The hazard ratio for the predation-risk comparison was 1.042 indicating no significant difference between the curves. However, the hazard ratio for the mating comparison was 4.021, reflecting a significant reduction in survival probability for mated snails relative to isolated snails. As such, mating resulted in a much shorter lifespan, an outcome that we interpret in terms of shifting resource allocation
    corecore