11 research outputs found

    Estimating nitrogen risk to Himalayan forests using thresholds for lichen bioindicators

    Get PDF
    Himalayan forests are biodiverse and support the cultural and economic livelihoods of their human communities. They are bounded to the south by the Indo-Gangetic Plain, which has among the highest concentrations of atmospheric ammonia globally. This source of excess nitrogen pushes northwards into the Himalaya, generating concern that Himalayan forests will be impacted. To estimate the extent to which atmospheric nitrogen is impacting Himalayan forests we focussed on lichen epiphytes, which are a well-established bioindicator for atmospheric nitrogen pollution. First, we reviewed published literature describing nitrogen thresholds (critical levels and loads) at which lichen epiphytes are affected, identifying a mean and confidence intervals based on previous research conducted across a diverse set of biogeographic and ecological settings. Second, we used estimates from previously published atmospheric chemistry models (EMEP-WRF and UKCA-CLASSIC) projected to the Himalaya with contrasting spatial resolution and timescales to characterise model variability. Comparing the lichen epiphyte critical levels and loads with the atmospheric chemistry model projections, we created preliminary estimates of the extent to which Himalayan forests are impacted by excess nitrogen; this equated to c. 80–85% and c. 95–98% with respect to ammonia and total nitrogen deposition, respectively. Recognising that lichens are one of the most sensitive bioindicators for atmospheric nitrogen pollution, our new synthesis of previous studies on this topic generated concern that most Himalayan forests are at risk from excess nitrogen. This is a desk-based study that now requires verification through biological surveillance, for which we provide key recommendations

    Detection of unsafety in families with parental and/or child developmental problems at the start of family support

    Get PDF
    Background Risk assessment is crucial in preventing child maltreatment as it can identify high-risk cases in need of child protection intervention. Despite this importance, there have been no validated risk assessment instruments available in the Netherlands for assessing the risk of child maltreatment. Therefore, the predictive validity of the California Family Risk Assessment (CFRA) was examined in Dutch families who received family support. In addition, the added value of a number of experimental items was examined. Finally, it was examined whether the predictive value of the instrument could be improved by modifying the scoring procedure. Methods Dutch families who experienced parenting and/or child developmental problems and were referred by the Centres for Youth and Family for family support between July 2009 and March 2011 were included. This led to a sample of 491 families. The predictive validity of the CFRA and the added value of the experimental items were examined by calculating AUC values. A CHAID analysis was performed to examine whether the scoring procedure could be improved. Results About half of the individual CFRA items were not related to future reports of child maltreatment. The predictive validity of the CFRA in predicting future reports of child maltreatment was found to be modest (AUC = .693). The addition of some of the experimental items and the modification of the scoring procedure by including only items that were significantly associated with future maltreatment reports resulted in a ‘high’ predictive validity (AUC = .795). Conclusions This new set of items might be a valuable instrument that also saves time because only variables that uniquely contribute to the prediction of future reports of child maltreatment are included. Furthermore, items that are perceived as difficult to assess by professionals, such as parental mental health problems or parents’ history of abuse/neglect, could be omitted without compromising predictive validity. However, it is important to examine the psychometric properties of this new set of items in a new dataset

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    Effects of global change during the 21st century on the nitrogen cycle

    Get PDF
    The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr−1 in 2010, which is approximately equal to the sum of biological N fixation in unmanaged terrestrial and marine ecosystems. According to current projections, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr−1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion-related emissions implemented. Some N-cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr−1 in 2008 to 93 Tg N yr−1 in 2100 assuming a change in global surface temperature of 5 °C in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 135 Tg N yr−1. Another major change is the effect of climate changes on aerosol composition and specifically the increased sublimation of NH4NO3 close to the ground to form HNO3 and NH3 in a warmer climate, which deposit more rapidly to terrestrial surfaces than aerosols. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42− from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10 and human health effects globally as well as eutrophication and climate effects. The volatility of NH4NO3 and rapid dry deposition of the vapour phase dissociation products, HNO3 and NH3, is estimated to be reducing the transport distances, deposition footprints and inter-country exchange of Nr in these regions. There have been important policy initiatives on components of the global N cycle. These have been regional or country-based and have delivered substantial reductions of inputs of Nr to sensitive soils, waters and the atmosphere. To date there have been no attempts to develop a global strategy to regulate human inputs to the nitrogen cycle. However, considering the magnitude of global Nr use, potential future increases, and the very large leakage of Nr in many forms to soils, waters and the atmosphere, international action is required. Current legislation will not deliver the scale of reductions globally for recovery from the effects of Nr deposition on sensitive ecosystems, or a decline in N2O emissions to the global atmosphere. Such changes would require substantial improvements in nitrogen use efficiency across the global economy combined with optimization of transport and food consumption patterns. This would allow reductions in Nr use, inputs to the atmosphere and deposition to sensitive ecosystems. Such changes would offer substantial economic and environmental co-benefits which could help motivate the necessary actions

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury

    No full text

    Novel Treatment Strategies for Biofilm-Based Infections

    No full text
    corecore