1,000 research outputs found

    Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    Get PDF
    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness - Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflow's power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.Comment: 7 pages, 4 figures included. Proceedings of the Workshop `Extragalactic Jets: Theory and Observation from Radio to Gamma Ray', Girdwood, May 200

    Discovery of hard X-ray features around hotspots of Cygnus A

    Full text link
    We present results of analysis of a Chandra observation of Cygnus A in which the X-ray hotspots at the ends of the jets are mapped in detail. A hardness map reveals previously unknown structure in the form of outer and inner hard arcs around the hotspots, with hardness significantly enhanced compared with the hotspot central regions. The outer hard arcs may constitute the first detection of the bow shock; the inner hard arcs may reveal where the jets impact on the hotspots. We argue that these features cannot result from electrons radiating by the synchrotron self-Compton process. Instead we consider two possible sources of the hard emission: the outer arcs may be due to thermal radiation of hot intracluster gas compressed at the bow shock. Alternatively, both outer and inner arcs may be due to synchrotron radiation of electrons accelerated in turbulent regions highly perturbed by shocks and shear flows. Comparison of measured hardness ratios with simulations of the hardness ratios resulting from these processes show that it is more diffcult to explain the observations with a thermal model. Although we cannot rule out a thermal model, we argue in favour of the non-thermal explanation. The hard regions in the secondary hotspots suggest that jet activity is still powering these hotspots.Comment: MNRAS in press; 5 pages, 3 figures (2 figures in colour in jpeg format should be printed separately

    Dynamics and High Energy Emission of the Flaring HST-1 Knot in the M 87 Jet

    Full text link
    Stimulated by recent observations of a radio-to-X-ray synchrotron flare from HST-1, the innermost knot of the M 87 jet, as well as by a detection of a very high energy gamma-ray emission from M 87, we investigated the dynamics and multiwavelength emission of the HST-1 region. We study thermal pressure of the hot interstellar medium in M 87 and argue for a presence of a gaseous condensation in its central parts. Interaction of the jet with such a feature is likely to result in formation of a converging reconfinement shock in the innermost parts of the M 87 jet. We show that for a realistic set of the outflow parameters, a stationary and a flaring part of the HST-1 knot located \~100 pc away from the active center can be associated with the decelerated portion of the jet matter placed immediately downstream of the point where the reconfinement shock reaches the jet axis. We discuss a possible scenario explaining a broad-band brightening of the HST-1 region related to the variable activity of the central core. We show that assuming a previous epoch of the high central black hole activity resulting in ejection of excess particles and photons down along the jet, one may first expect a high-energy flare of HST-1 due to inverse-Comptonisation of the nuclear radiation, followed after a few years by an increase in the synchrotron continuum of this region. If this is the case, then the recently observed increase in the knot luminosity in all spectral bands could be regarded as an unusual echo of the outburst that had happened previously in the active core of the M 87 radio galaxy.Comment: 30 pages, 7 figures included. Accepted for publication in MNRA

    Automatic quenching of high energy gamma-ray sources by synchrotron photons

    Full text link
    We investigate a magnetized plasma in which injected high energy gamma-rays annihilate on a soft photon field, that is provided by the synchrotron radiation of the created pairs. For a very wide range of magnetic fields, this process involves gamma-rays between 0.3 GeV and 30 TeV. We derive a simple dynamical system for this process, analyze its stability to runaway production of soft photons and paris, and find conditions for it to automatically quench by reaching a steady state with an optical depth to photon-photon annihilation larger than unity. We discuss applications to broad-band gamma-ray emitters, in particular supermassive black holes. Automatic quenching limits the gamma-ray luminosity of these objects and predicts substantial pair loading of the jets of less active sources.Comment: 11 pages, 2 figures included. Revised version, accepted for publication in ApJ

    Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations

    Get PDF
    We build on recent developments in the study of fluid turbulence [Gibbon \textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-mm moments, Dm±D_m^{\pm}, of ω±=ω±j\omega^\pm= \omega \pm j, where ω\omega and jj are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number PMP_M, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for Dm±D_m^{\pm} and D1±D_1^{\pm}. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents q±q^{\pm} that characterize the power-law dependences of the energy spectra E±(k)\mathcal{E}^{\pm}(k) on the wave number kk, in the inertial range of scales. We also comment on (a) the generalization of our results to the case PM≠1P_M \neq 1 and (b) the relation between Dm±D_m^{\pm} and the order-mm moments of gradients of hydrodynamic fields, which are used in characterizing intermittency in turbulent flows.Comment: 14 pages, 3 figure

    Suprathermal electrons at Saturn's bow shock

    Get PDF
    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with theory in which the "injection" of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap
    • …
    corecore