1,025 research outputs found
Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm
We investigate how the total radio luminosity of AGN-powered radio sources
depends on their accretion luminosity and the central black hole mass. We find
that AGNs form two distinct and well separated sequences on the radio-loudness
- Eddington-ratio plane. We argue that these sequences mark the real upper
bounds of radio-loudness of two distinct populations of AGNs: those hosted
respectively by elliptical and disk galaxies. Both sequences show the same
dependence of the radio-loudness on the Eddington ratio (an increase with
decreasing Eddington ratio), which suggests that another parameter in addition
to the accretion rate must play a role in determining the jet production
efficiency in active galactic nuclei, and that this parameter is related to
properties of the host galaxy. The revealed host-related radio dichotomy breaks
down at high accretion rates where the dominant fraction of luminous quasars
hosted by elliptical galaxies is radio quiet. We argue that the huge difference
between the radio-loudness reachable by AGNs in disc and elliptical galaxies
can be explained by the scenario according to which the spin of a black hole
determines the outflow's power, and central black holes can reach large spins
only in early type galaxies (following major mergers), and not (in a
statistical sense) in spiral galaxies.Comment: 7 pages, 4 figures included. Proceedings of the Workshop
`Extragalactic Jets: Theory and Observation from Radio to Gamma Ray',
Girdwood, May 200
Discovery of hard X-ray features around hotspots of Cygnus A
We present results of analysis of a Chandra observation of Cygnus A in which
the X-ray hotspots at the ends of the jets are mapped in detail. A hardness map
reveals previously unknown structure in the form of outer and inner hard arcs
around the hotspots, with hardness significantly enhanced compared with the
hotspot central regions. The outer hard arcs may constitute the first detection
of the bow shock; the inner hard arcs may reveal where the jets impact on the
hotspots. We argue that these features cannot result from electrons radiating
by the synchrotron self-Compton process. Instead we consider two possible
sources of the hard emission: the outer arcs may be due to thermal radiation of
hot intracluster gas compressed at the bow shock. Alternatively, both outer and
inner arcs may be due to synchrotron radiation of electrons accelerated in
turbulent regions highly perturbed by shocks and shear flows. Comparison of
measured hardness ratios with simulations of the hardness ratios resulting from
these processes show that it is more diffcult to explain the observations with
a thermal model. Although we cannot rule out a thermal model, we argue in
favour of the non-thermal explanation. The hard regions in the secondary
hotspots suggest that jet activity is still powering these hotspots.Comment: MNRAS in press; 5 pages, 3 figures (2 figures in colour in jpeg
format should be printed separately
Dynamics and High Energy Emission of the Flaring HST-1 Knot in the M 87 Jet
Stimulated by recent observations of a radio-to-X-ray synchrotron flare from
HST-1, the innermost knot of the M 87 jet, as well as by a detection of a very
high energy gamma-ray emission from M 87, we investigated the dynamics and
multiwavelength emission of the HST-1 region. We study thermal pressure of the
hot interstellar medium in M 87 and argue for a presence of a gaseous
condensation in its central parts. Interaction of the jet with such a feature
is likely to result in formation of a converging reconfinement shock in the
innermost parts of the M 87 jet. We show that for a realistic set of the
outflow parameters, a stationary and a flaring part of the HST-1 knot located
\~100 pc away from the active center can be associated with the decelerated
portion of the jet matter placed immediately downstream of the point where the
reconfinement shock reaches the jet axis. We discuss a possible scenario
explaining a broad-band brightening of the HST-1 region related to the variable
activity of the central core. We show that assuming a previous epoch of the
high central black hole activity resulting in ejection of excess particles and
photons down along the jet, one may first expect a high-energy flare of HST-1
due to inverse-Comptonisation of the nuclear radiation, followed after a few
years by an increase in the synchrotron continuum of this region. If this is
the case, then the recently observed increase in the knot luminosity in all
spectral bands could be regarded as an unusual echo of the outburst that had
happened previously in the active core of the M 87 radio galaxy.Comment: 30 pages, 7 figures included. Accepted for publication in MNRA
Automatic quenching of high energy gamma-ray sources by synchrotron photons
We investigate a magnetized plasma in which injected high energy gamma-rays
annihilate on a soft photon field, that is provided by the synchrotron
radiation of the created pairs. For a very wide range of magnetic fields, this
process involves gamma-rays between 0.3 GeV and 30 TeV. We derive a simple
dynamical system for this process, analyze its stability to runaway production
of soft photons and paris, and find conditions for it to automatically quench
by reaching a steady state with an optical depth to photon-photon annihilation
larger than unity. We discuss applications to broad-band gamma-ray emitters, in
particular supermassive black holes. Automatic quenching limits the gamma-ray
luminosity of these objects and predicts substantial pair loading of the jets
of less active sources.Comment: 11 pages, 2 figures included. Revised version, accepted for
publication in ApJ
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
We build on recent developments in the study of fluid turbulence [Gibbon
\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled,
order- moments, , of , where
and are, respectively, the vorticity and current density in
three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis,
for unit magnetic Prandtl number , how these moments can be used to
identify three possible regimes for solutions of the MHD equations; these
regimes are specified by inequalities for and . We then
compare our mathematical results with those from our direct numerical
simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its
fluid-turbulence counterpart insofar as all solutions, which we have
investigated, remain in \textit{only one of these regimes}; this regime has
depleted nonlinearity. We examine the implications of our results for the
exponents that characterize the power-law dependences of the energy
spectra on the wave number , in the inertial range of
scales. We also comment on (a) the generalization of our results to the case
and (b) the relation between and the order- moments
of gradients of hydrodynamic fields, which are used in characterizing
intermittency in turbulent flows.Comment: 14 pages, 3 figure
Suprathermal electrons at Saturn's bow shock
The leading explanation for the origin of galactic cosmic rays is particle
acceleration at the shocks surrounding young supernova remnants (SNRs),
although crucial aspects of the acceleration process are unclear. The similar
collisionless plasma shocks frequently encountered by spacecraft in the solar
wind are generally far weaker (lower Mach number) than these SNR shocks.
However, the Cassini spacecraft has shown that the shock standing in the solar
wind sunward of Saturn (Saturn's bow shock) can occasionally reach this
high-Mach number astrophysical regime. In this regime Cassini has provided the
first in situ evidence for electron acceleration under quasi-parallel upstream
magnetic conditions. Here we present the full picture of suprathermal electrons
at Saturn's bow shock revealed by Cassini. The downstream thermal electron
distribution is resolved in all data taken by the low-energy electron detector
(CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were
at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18
keV) measured a suprathermal electron signature at 31 of 508 crossings, where
typically only the lowest energy channels (<100 keV) were above background. We
show that these results are consistent with theory in which the "injection" of
thermal electrons into an acceleration process involves interaction with
whistler waves at the shock front, and becomes possible for all upstream
magnetic field orientations at high Mach numbers like those of the strong
shocks around young SNRs. A future dedicated study will analyze the rare
crossings with evidence for relativistic electrons (up to ~1 MeV).Comment: 22 pages, 5 figures. Accepted for publication in Ap
- …