138 research outputs found

    Off-Pump Coronary Artery Bypass Surgery: Current Status

    Get PDF
    Coronary revascularization was first performed on the beating heart. Later on the heart-lung machine facilitated the wide-spread application and allowed accurate anastomoses to be performed on a fibrillating or arrested heart. The contemporary beating heart surgery goes back to the original approach, thereby using appropriate technology and techniques that have allowed surgeons to perform high quality reproducible anastomoses. Beating heart surgery has once again established its place as an acceptable method for multi-vessel coronary revascularization. Worldwide, approximately 30% of all surgical coronary revascularization procedures are performed on a beating heart (off-pump coronary artery bypass-OPCAB); in some countries they exceed 50%, while in some centers they even approach 99% of unselected cases. Several end-points have been analyzed from recent publications of the world literature, and are presented herein

    Model-based design of AM components to enable decentralized digital manufacturing systems

    Get PDF
    Additive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy

    Sprint mechanical characteristics of sub-elite and recreational sprinters

    Get PDF
    The aim of this study was to explore the sprint mechanical and kinematic characteristics of sub-elite and recreational male sprinters during the acceleration phase of a linear sprint running section. Eighteen sprinters (nine sub-elite, nine recreational) performed two all-out 30-m sprints. Three high speed panning cameras were used to record the entire sprint distance continuously. The sprint velocity-time data of each camera were determined by temporal analysis of the video recording. These values were used to determine the variables of the horizontal F-v profile (theoretical maximal values of horizontal force [F0], velocity [v0], power [Pmax], the maximal ratio of horizontal to resultant force [RFmax], the decline in the ratio of horizontal force production as the running speed increases [DRF]) and key kinematic characteristics. Significant differences were observed between the groups for v0 (0.79 ± 0.24 m∙s-1, p = 0.005), Pmax (3 ± 1.17 W∙kg-1, p = 0.020) and RFmax (3.1 ± 1.2 %, p = 0.021). No statistical differences were found for F0 (0.55 ± 0.46 N∙kg-1, p = 0.25) and DRF (0.2 ± 0.5 %∙s∙m, p = 0.67). The mean running velocity and mean step rate were higher, whereas mean ground contact time was shorter in sub-elite sprinters. There were no differences in mean step length and mean flight time. The subelite sprinters in our study demonstrated the capacity to generate higher amounts of horizontal forces at higher running speeds, apply horizontal force to the ground more efficiently and achieve higher step rates during sprint acceleration than recreational sprinters

    Hydro-without-Hydro Framework for Simulations of Black Hole-Neutron Star Binaries

    Full text link
    We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable to study the pre-merger evolution of black hole-neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the space-time geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach.Comment: 16 pages, 7 figures. To appear in the Classical and Quantum Gravity special issue on Numerical Relativit

    Towards a European military culture?

    Get PDF
    Recent discussion of the Common Security and Foreign Policy has focussed on the international relations between European member states. Such a focus is entirely valid since the project is being driven forward by nation states. However, the success of the Common Security and Foreign Policy and especially the development of a specifically European military capability under the European Security and Defence Policy will depend not merely on the will of the participating nation-states. Above all, it will depend on the development of a common military culture at the level of weapons development and procurement and at the level of doctrine. The problem is that at neither level is the development of a European culture remotely in sight
    corecore