464 research outputs found
Quantitative Population Epigenetics in Screening and Development of Regulator-Active Factors of the Farming System
Likewise, index selection based on statistical genetic theory in plant and animal breeding the methodology "Quantitative Population Epigenetics" can be appropriated to improve efficiency in screening and development of regulator-active factors of the farming system for potential to enhance quantitative characters such as yield, standability and resistance to unfavorable environmental influences (e.g., water stress, cold temperatures, disease resistance).
For example, as was shown for an effect of monoethanolamine on yield and water use efficiency of spring barley plants (Bergmann et al. 1991)
Quantitative Population Epigenetics a Catalyst for Sustainable Agriculture
Ecological intensification of agricultural practices can be a minimum input agriculture with a maximum utilization of the epigenetic potential for a maximum output.
The application of Quantitative Population Epigenetics as a catalyst for sustainable agriculture offers earning opportunities (market segments or business cases) for the existing players in the high-input agriculture in terms of win-win.
For example, agriculture is a major factor in eutrophication of surface waters. By using epigenetically active compounds to switch on yield or stress genes, new crop varieties for low-input agriculture could be developed to improve nitrogen and water use efficiency for cereal production significantly
Quantification of antithrombin isoform proportions in plasma samples of healthy subjects, sepsis patients, and in antithrombin concentrates
Antithrombin (AT) circulates in plasma in two isoforms, AT-alpha (90-95%) and AT-beta (5-10%). AT isoform proportions were measured in plasma samples of 17 healthy subjects and 26 posttraumatic or postoperative septic patients, as well as in 4 commercially available AT concentrates. Total AT was immune-purified from plasma and concentrates. Micellar electrokinetic chromatography was used to analytically separate and quantify the isoforms. Compared with plasma samples of healthy donors, septic plasmas revealed significantly reduced AT activity (p < 0.001) and beta-isoform content (p < 0.05). AT-beta correlated inversely with urea and creatinine serum concentrations (p < 0.01), indicating a relationship between better renal function and higher beta-isoform content. beta-Isoform neither correlated with age, gender, and 28-day mortality, nor with plasma concentrations of various inflammatory and organ function parameters. The commercial AT concentrate, which is equivalent to the current WHO standard, had an AT-beta content close to that found in plasma of healthy subjects. The availability of this novel quantitative AT isoform assay allows, for the first time, a closer look at the role of AT isoforms in hemostasis and sepsis pathophysiology. Copyright (C) 2002 S. Karger AG, Basel
A randomised control trial protocol of MuST for vascular access cannulation in hemodialysis patients (MuST Study): contributions for a safe nursing intervention
Background: The vascular access preservation and the maintenance of a complication-free fistula remains an Achilles’heel of hemodialysis in chronic kidney patients due to its substantial contribution to the morbidity and mortality. Systematic studies in the area of examining cannulation practices, achieving complication-free cannulation, and strategies to improve fistula survival are needed. For this reason, we consider it essential to create and investigate new methodologies for approaching fistula in patients on regular HD. The Multiple Single Cannulation Technique (MuST) is based on the association between the rope-ladder (RL) using the arteriovenous vessel through progressive rotation, and the buttonhole (BH) since there are three specific cannulation
sites for each cannulation day during the week. The MuST is simple to implement and seems to be a very promising technique in terms of patient safety. Previous studies already showed an arteriovenous fistula survival similar to RL but significantly higher than BH.
Methods: This MuST study is a multicenter, prospective, non-blind, parallel-group, randomized controlled trial with the intervention group submitted to MuST and a control group undergoing the rope-ladder, up to 100 subjects for each group. Patients will be randomized 1:1 to one of two cannulation technique (CT), and the follow-up period of
this study will be 12 months. Primary outcome is to evaluate the arteriovenous fistula survival rate at 12 months determined by the percentage of fistulas in use from the beginning of the study to the date of the first clinical intervention by angioplasty or vascular surgery, to maintain or restore patency (unassisted patency). Secondary outcome is to evaluate arteriovenous fistula survival rate at 12 month determined by the percentage of fistulas in use from the study start to the date of access abandonment due to dysfunction, patient abandonment, or death, treatment change modality or study end. We will also evaluate the assisted primary patency and include the following secondary outcomes associated with the cannulation technique: Infection, Hematoma, Aneurysm development, and pain.
Discussion: The study will investigate whether fistula survival can be improved when using cannulation by MuST compared to the RL. MuST study will provide important information on fistula survival when cannulated by MuST but also information related to its use in fistulas previously cannulated by other CTs.info:eu-repo/semantics/publishedVersio
Negative Regulation of Transactivation Function but Not DNA Binding of NF-κB and AP-1 by IκBβ1 in Breast Cancer Cells
The transcription factor NF-κB regulates the expression of genes involved in cancer cell invasion, metastasis, angiogenesis, and resistance to chemotherapy. In normal cells NF-κB is maintained in the cytoplasm by protein-protein interaction with inhibitor IκBs. In contrast, in cancer cells a substantial amount of NF-κB is in the nucleus and constitutively activates target genes. To understand the mechanisms of constitutive NF-κB activation, we have analyzed the function of IκBα and IκBβ in breast cancer cells. In most cases, constitutive NF-κB DNA binding correlated with reduced levels of either IκBα or IκBβ isoforms. Overexpression of IκBα but not IκBβ1 resulted in reduced constitutive DNA binding of NF-κB in MDA-MB-231 cells. Unexpectedly, IκBβ1 overexpression moderately increased 12-O-tetradecanoylphorbol-13-acetate- and interleukin-1-inducible NF-κB DNA binding. 12-O-Tetradecanoylphorbol-13-acetate- and interleukin-1-induced transactivation by NF-κB, however, was lower in IκBβ1-overexpressing cells. Mutants of IκBβ1 lacking the C-terminal casein kinase II phosphorylation sites, which form a stable complex with DNA bound NF-κB without inhibiting its transactivation in other cell types, repressed the transactivation by NF-κB in MDA-MB-231 cells. Consistent with the results of transient transfections, the expression of urokinase plasminogen activator, an NF-κB target gene, was reduced in IκBβ1-overexpressing cells. These results suggest that depending on the cell type, IκBβ1 represses the expression of NF-κB-regulated genes by inhibiting either DNA binding or transactivation function of NF-κB
Expression of a dominant T-cell receptor can reduce toxicity and enhance tumor protection of allogeneic T-cell therapy
Due to the lack of specificity for tumor antigens, allogeneic T-cell therapy is associated with graft-versus-host disease. Enhancing the anti-tumor specificity while reducing the graft-versus-host disease risk of allogeneic T cells has remained a research focus. In this study, we demonstrate that the introduction of ‘dominant’ T-cell receptors into primary murine T cells can suppress the expression of endogenous T-cell receptors in a large proportion of the gene-modified T cells. Adoptive transfer of allogeneic T cells expressing a ‘dominant’ T-cell receptor significantly reduced the graft-versus-host toxicity in recipient mice. Using two bone marrow transplant models, enhanced anti-tumor activity was observed in the presence of reduced graft-versus-host disease. However, although transfer of T-cell receptor gene-modified allogeneic T cells resulted in the elimination of antigen-positive tumor cells and improved the survival of treated mice, it was associated with accumulation of T cells expressing endogenous T-cell receptors and the development of delayed graft-versus-host disease. The in vivo deletion of the engineered T cells, mediated by endogenous mouse mammary tumor virus MTV8 and MTV9, abolished graft-versus-host disease while retaining significant anti-tumor activity of adoptively transferred T cells. Together, this study shows that the in vitro selection of allogeneic T cells expressing high levels of a ‘dominant’ T-cell receptor can lower acute graft-versus-host disease and enhance anti-tumor activity of adoptive cell therapy, while the in vivo outgrowth of T cells expressing endogenous T-cell receptors remains a risk factor for the delayed onset of graft-versus-host disease
Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity
Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue-restricted antigens (PTA). At the initiation of GVHD, LN fibroblastic reticular cells (FRC) rapidly reduced expression of genes regulated by DEAF1, an Autoimmune Regulator-like transcription factor required for intra-nodal expression of PTA. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRC during GVHD resulted in the activation of auto-aggressive T cells and gut injury. Finally, we show that FRC normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging auto-reactive T cells from the repertoire
PD1-Expressing T Cell Subsets Modify the Rejection Risk in Renal Transplant Patients
We tested whether multi-parameter immune phenotyping before or after renal Âtransplantation can predict the risk of rejection episodes. Blood samples collected before and weekly for 3 months after transplantation were analyzed by multi-parameter flow cytometry to define 52 T cell and 13 innate lymphocyte subsets in each sample, producing more than 11,000 data points that defined the immune status of the 28 patients included in this study. Principle component analysis suggested that the patients with histologically confirmed rejection episodes segregated from those without rejection. Protein death 1 (PD-1)-expressing subpopulations of regulatory and conventional T cells had the greatest influence on the principal component segregation. We constructed a statistical tool to predict rejection using a support vector machine algorithm. The algorithm correctly identified 7 out of 9 patients with rejection, and 14 out of 17 patients without rejection. The immune profile before transplantation was most accurate in determining the risk of rejection, while changes of immune parameters after transplantation were less accurate in discriminating rejection from non-rejection. The data indicate that pretransplant immune subset analysis has the potential to identify patients at risk of developing rejection episodes, and suggests that the proportion of PD1-expressing T cell subsets may be a key indicator of rejection risk
CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor
Ag receptors used for cancer immunotherapy are often directed against tumor-associated Ags also expressed in normal tissues. Targeting of such Ags can result in unwanted autoimmune attack of normal tissues or induction of tolerance in therapeutic T cells. We used a murine model to study the phenotype and function of T cells redirected against the murine double minute protein 2 (MDM2), a tumor-associated Ag that shows low expression in many normal tissues. Transfer of MDM2-TCR-engineered T cells into bone marrow chimeric mice revealed that Ag recognition in hematopoietic tissues maintained T cell function, whereas presentation of MDM2 in nonhematopoietic tissues caused reduced effector function. TCR-engineered CD8(+) T cells underwent rapid turnover, downmodulated CD8 expression, and lost cytotoxic function. We found that MDM2-TCR-engineered CD4(+) T cells provided help and restored cytotoxic function of CD8(+) T cells bearing the same TCR. Although the introduction of the CD8 coreceptor enhanced the ability of CD4(+) T cells to recognize MDM2 in vitro, the improved self-antigen recognition abolished their ability to provide helper function in vivo. The data indicate that the same class I-restricted TCR responsible for Ag recognition and tolerance induction in CD8(+) T cells can, in the absence of the CD8 coreceptor, elicit CD4 T cell help and partially reverse tolerance. Thus MHC class I-restricted CD4(+) T cells may enhance the efficacy of therapeutic TCR-engineered CD8(+) T cells and can be readily generated with the same TCR
Transitional B cell cytokines predict renal allograft outcomes
Early immunological biomarkers that predict rejection and chronic allograft loss are needed to inform preemptive therapy and improve long-term outcomes. Here, we prospectively examined the ratio of interleukin-10 (IL-10) to tumor necrosis factor–α (TNFα) produced by transitional-1 B cells (T1B) 3 months after transplantation as a predictive biomarker for clinical and subclinical renal allograft rejection and subsequent clinical course. In both Training (n = 162) and Internal Validation (n = 82) Sets, the T1B IL-10/TNFα ratio 3 months after transplantation predicted both clinical and subclinical rejection anytime in the first year. The biomarker also predicted subsequent late rejection with a lead time averaging 8 months. Among biomarker high-risk patients, 60% had early rejection, of which 48% recurred later in the first posttransplant year. Among high-risk patients without early rejection, 74% developed rejection later in the first year. In contrast, only 5% of low-risk patients had early and 5% late rejection. The biomarker also predicted rejection in an External Validation Set (n = 95) and in key patient subgroups, confirming generalizability. Biomarker high-risk patients exhibited progressively worse renal function and decreased 5-year graft survival compared to low-risk patients. Treatment of B cells with anti-TNFα in vitro augmented the IL-10/TNFα ratio, restored regulatory activity, and inhibited plasmablast differentiation. To conclude, the T1B IL-10/TNFα ratio was validated as a strong predictive biomarker of renal allograft outcomes and provides a rationale for preemptive therapeutic intervention with TNF blockade
- …