230 research outputs found

    Trajectory matching of ozonesondes and MOZAIC measurements in the UTLS – Part 2: Application to the global ozonesonde network

    Get PDF
    Both balloon-borne electrochemical ozonesondes and MOZAIC (measurements of ozone, water vapour, carbon monoxide and nitrogen oxides by in-service Airbus aircraft) provide very valuable data sets for ozone studies in the upper troposphere/lower stratosphere (UTLS). Although MOZAIC's highly accurate UV-photometers are regularly inspected and recalibrated annually, recent analyses cast some doubt on the long-term stability of their ozone analysers. To investigate this further, we perform a 16 yr comparison (1994–2009) of UTLS ozone measurements from balloon-borne ozonesondes and MOZAIC. The analysis uses fully three-dimensional trajectories computed from ERA-Interim (European Centre for Medium-Range Weather Forecasts Re-analysis) wind fields to find matches between the two measurement platforms. Although different sensor types (Brewer-Mast and Electrochemical Concentration Cell ozonesondes) were used, most of the 28 launch sites considered show considerable differences of up to 25% compared to MOZAIC in the mid-1990s, followed by a systematic tendency to smaller differences of around 5–10% in subsequent years. The reason for the difference before 1998 remains unclear, but observations from both sondes and MOZAIC require further examination to be reliable enough for use in robust long-term trend analyses starting before 1998. According to our analysis, ozonesonde measurements at tropopause altitudes appear to be rather insensitive to changing the type of the Electrochemical Concentration Cell ozonesonde, provided the cathode sensing solution strength remains unchanged. Scoresbysund (Greenland) showed systematically 5% higher readings after changing from Science Pump Corporation sondes to ENSCI Corporation sondes, while a 1.0% KI cathode electrolyte was retained

    Vanishing Loss Effect on the Effective ac Conductivity behavior for 2D Composite Metal-Dielectric Films At The Percolation Threshold

    Full text link
    We study the imaginary part of the effective acac conductivity as well as its distribution probability for vanishing losses in 2D composites. This investigation showed that the effective medium theory provides only informations about the average conductivity, while its fluctuations which correspond to the field energy in this limit are neglected by this theory.Comment: 6 pages, 2 figures, submitted to Phys.Rev.

    Micro- and nanosystems for biology and medicine

    Get PDF
    The development of new tools and instruments for biomedical applications based on nano- (NEMS) or microelectromechanical systems technology (MEMS) are bridging the gap between the macro- and the nano-world. The well mastered microtechnique allows controlling many parameters of these instruments, which is essential for conducting reproducible and repeatable experiments in the life sciences. Examples are multifunctional scanning probe sensors for cell biology, an arthroscopic scanning force microscope for minimally invasive medical interventions and a nanopore sensor for single molecule experiments in biochemistry. This paper reviews some of the activities conducted in a fruitful interdisciplinary collaboration between physicists, engineers, biologists and physicians

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    C-axis electronic Raman scattering in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+\delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increases. In the superconducting state, a coherence 2\Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.Comment: 12 pages, REVTEX, 3 postscript figure
    • …
    corecore