8 research outputs found

    Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy

    Get PDF
    Nanocrystals represent an improvement over the traditional nanocarriers for dermal application, providing the advantages of 100% drug loading, a large surface area, increased adhesion, and the potential for hair follicle targeting. To investigate their advantage for drug delivery, compared to a base cream formulation, dexamethasone (Dx), a synthetic glucocorticoid frequently used for the treatment of inflammatory skin diseases, was covalently linked with the paramagnetic probe 3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) to DxPCA. To investigate the penetration efficiency between these two vehicles, electron paramagnetic resonance (EPR) spectroscopy was used, which allows the quantification of a spin-labeled drug in different skin layers and the monitoring of the drug release. The penetration behavior in excised healthy and barrier-disrupted porcine skin was monitored by EPR, and subsequently analyzed using a numerical diffusion model. As a result, diffusion constants and free energy values in the different layers of the skin were identified for both formulations. Dx-nanocrystals showed a significantly increased drug amount that penetrated into viable epidermis and dermis of intact (factor 3) and barrier-disrupted skin (factor 2.1) compared to the base cream formulation. Furthermore, the observed fast delivery of the spin-labeled drug into the skin (80% DxPCA within 30 min) and a successive release from the aggregate unit into the viable tissue makes these nanocrystals very attractive for clinical applications

    Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs

    Get PDF
    Purpose Solubility and dissolution rate are essential for the oral absorption and bioavailability of poorly soluble drugs. The aim of this study was to prepare nano-co-crystals by combination of nanocrystal and co-crystal technologies, and investigate its effect, in situ, on increased kinetic solubility and dissolution rate. Methods Co-crystals of itraconazole-fumaric acid, itraconazole-succinic acid, indomethacin-saccharin and indomethacin-nicotinamide were prepared and nano-sized by wet milling. The particle size and solid state of the co-crystals were characterized by optical microscope, LD, PCS, DSC and XRPD before and after milling. Results 300-450 nm sized nano-co-crystals with a stable physical solid state were successfully prepared. Nano-co-crystals exhibited a lower crystallinity reduction than nanocrystals after wet milling. The particle size effect on the kinetic solubility of co-crystals was analysed for macro-, micro- and nano-co-crystals with in situ kinetic solubility studies. The maximum kinetic solubility of nano-co-crystals increased with excess conditions until a plateau. The highest increase was obtained with itraconazole-succinic acid nano-co-crystals with a kinetic solubility of 263.5 ± 3.9 ÎŒg/mL which was 51.5 and 6.6 times higher than the solubility of raw itraconazole and itraconazole-succinic acid co-crystal. Conclusions The synergistic effect of nanocrystals and co-crystals with regard to increased kinetic solubility and dissolution rate was proven. The combination of the advantages of nanocrystals and co-crystals is a promising formulation strategy to increase both the solubility and dissolution rate of poorly soluble drugs

    Composition of Microbial Oral Biofilms during Maturation in Young Healthy Adults

    Get PDF
    <div><p>In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in 15 different bacterial classes. A large inter-individual difference in the subjects’ microbiota was observed, comprising 35% of the total variance, but lacking conspicuous general temporal trends in both alpha and beta diversity. We further obtained strong evidence that subjects can be categorized into three clusters based on three differently occurring and mutually exclusive species clusters.</p></div

    Species and subject clusters.

    No full text
    <p>Combined consensus clustering and ordination (PCA) of robust species and human subjects. (A) First (PC1) and second (PC2) axis and (B) first (PC1) and third axis (PC3) of the ordination space of individual subject samples are shown. Species data points (small spheres) are projected into the ordination space as weighted averages and grouped into three clusters according to species consensus clustering: “<i>Prevotella</i> cluster” (magenta), “<i>Streptococcus</i> cluster” (orange), “Proteobacteria cluster” (green). Large spheres represent the centroids of individual sample points for each human subject, color-coded according to the result of subject consensus clustering. (C) Relative species abundances in subject clusters. Color coding of species clusters is analogous to (A) and (B).</p
    corecore