225 research outputs found

    Parallelization of a software based intrusion detection system - Snort

    Get PDF
    Computer networks are already ubiquitous in people’s lives and work and network security is becoming a critical part. A simple firewall, which can only scan the bottom four OSI layers, cannot satisfy all security requirements. An intrusion detection system (IDS) with deep packet inspection, which can filter all seven OSI layers, is becoming necessary for more and more networks. However, the processing throughputs of the IDSs are far behind the current network speed. People have begun to improve the performance of the IDSs by implementing them on different hardware platforms, such as Field-Programmable Gate Array (FPGA) or some special network processors. Nevertheless, all of these options are either less flexible or more expensive to deploy. This research focuses on some possibilities of implementing a parallelized IDS on a general computer environment based on Snort, which is the most popular open-source IDS at the moment. In this thesis, some possible methods have been analyzed for the parallelization of the pattern-matching engine based on a multicore computer. However, owing to the small granularity of the network packets, the pattern-matching engine of Snort is unsuitable for parallelization. In addition, a pipelined structure of Snort has been implemented and analyzed. The universal packet capture API - LibPCAP has been modified for a new feature, which can capture a packet directly to an external buffer. Then, the performance of the pipelined Snort can have an improvement up to 60% on an Intel i7 multicore computer for jumbo frames. A primary limitation is on the memory bandwidth. With a higher bandwidth, the performance of the parallelization can be further improved

    Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip

    Get PDF
    Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in similar to 1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure

    Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip

    Get PDF
    Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in similar to 1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure
    corecore