PARALLELIZATION OF A SOFTWARE BASED

INTRUSION DETECTION SYSTEM - SNORT

A thesis submitted in partial fulfilment of the requirements for the

Degree

of Master of Electrical and Computer Engineer

in the University of Canterbury

by Huan Zhang

University of Canterbury

2011

Abstract

Computer networks are already ubiquitous in people’s lives and work and network
security is becoming a critical part. A simple firewall, which can only scan the bottom
four OSI layers, cannot satisfy all security requirements. An intrusion detection system
(IDS) with deep packet inspection, which can filter all seven OSI layers, is becoming
necessary for more and more networks. However, the processing throughputs of the
IDSs are far behind the current network speed. People have begun to improve the
performance of the IDSs by implementing them on different hardware platforms, such
as Field-Programmable Gate Array (FPGA) or some special network processors.
Nevertheless, all of these options are either less flexible or more expensive to deploy.
This research focuses on some possibilities of implementing a parallelized IDS on a
general computer environment based on Snort, which is the most popular open-source

IDS at the moment.

In this thesis, some possible methods have been analyzed for the parallelization of the
pattern-matching engine based on a multicore computer. However, owing to the small
granularity of the network packets, the pattern-matching engine of Snort is unsuitable
for parallelization. In addition, a pipelined structure of Snort has been implemented and
analyzed. The universal packet capture API - LibPCAP has been modified for a new
feature, which can capture a packet directly to an external buffer. Then, the
performance of the pipelined Snort can have an improvement up to 60% on an Intel 17
multicore computer for jumbo frames. A primary limitation is on the memory
bandwidth. With a higher bandwidth, the performance of the parallelization can be

further improved.

Keyword: Snort, IDS, Intrusion Detection, Multicore, Parallelization, Pattern Matching.

Table of Contents

AADSEIACT ...t [
TabIE OF CONTENTS ...ttt i
I o) 1o [0 P iv
LISE OF T@DIES ... s vii
ACKNOWIEAGMENTS ...ttt nneneenes viii
GHOSSANY ...t bbbttt b bbbt e et b Rt bt re st IX
I. INTRODUCTION AND BACKGROUND........ccciiiiirieiriinieeesee e 1
1 INEFOTUCTION ...ttt bbb 1
1.1 Computer Network System and ItS SECUrityccceeevverierienienieneceeeeeee 1

1.2 Intrusion Detection / Prevention SyStem.........ceccveviieieriecieneenieeeeseeieseeeee e 2

1.3 Multi-core and Parallelization.............ccooeoerenieinenieinieicieeee e 4

1.4 ReSEArch GOAlScoeiuiiiiiiiee e e 10

1.5 DiSSErtation STIUCHUIEevveuerteieiiieiieteteteetet sttt ettt 11

2 Background and Related WOIK ... 12
2.1 Network Packets and “libpcap”libraryccoceevevierieienienienienieieeeeeene 12

2.2 Parallelization AIOTItRIMSccooouieiiiiieiiieecee e 14

2.3 Pattern Matching Algorithms and Detection Engineccocecevevivenenincnnenene 20
2.3.1. Single Pattern Matching Algorithmsccceceeviieierieierieieceee e 21

2.3.2. Brute Force AIZOrithmcccooviiiieiiiiiieieeieeeeeeeee e 21

2.3.3. Hash AIOTIthmcccooiiiieiiciceceee e 22

2.3.4. Automata AlOTIthmccoevieiiiiieieieeeeeee s 22

2.3.5. Sliding Window AlOTithm...........cccoevieiiiiieiieieieeeceee e 23

2.3.6. Bit-Parallelism Algorithm...........ccocoeviriiiirnieiiiiieieeeeeeeeee e 26

2.3.7. Multiple String Matching Algorithmscccoecvevieeienieeiieieeeeceeeees 29

2.3.8. Snort String Matching AIZOrithmscccoeeiriniiininiincnenccceene 34

2.4 Current IDS (Snort) parallelization...........c.cceeveeverierienieniesienenecieeeereereee e 34

2.5 SUITIMATY ...ttt ettt r e s sae b saesnesresnenne s 38

I CUrrent System ANAIYSISc.cviiieiieiece e ns 39
3 SN0t Code ANAIYSIScueiiiiiiie s 39
3.1 Snort OVerall StIUCTUTEo.eoveuirieieiiieree e 39

3.2 SNOTE VATIADIES ...ttt 41

33 SNOTt TNItIAlISALIONeueieiieiie e 45

34 Snort Detection PrOCESScovieiiriieiiriieiecieieetee et 46

3.5 Snort Signature RUIES........c.eoviiiiiiieiiieieeeeetetetee et 48

3.6 SNOTE PIUZINS ...ttt 52

3.7 Packet defragment “0rag2”.........ccoocievieiinieieeeeeeeee e 53

3.8 Detection ENGINeccooiiieieiiieeeeee e 55

4 LibPCAP Mechanism ANAIYSIS.........ccccciiiiiiiiiiieiesee e 58
5 Pattern MatChing ..o e 62
5.1 General parallelization Methodsccevevierierienieriieeeeeee e 62

5.2 Reversed Bit-Parallelism Algorithm..........cccoevieieieiiniiieeeeeeeeee 64
5.3. Parallelized Aho-Corasick (PAC) Algorithm............ccccoevevievierienienieieniecieienn, 70
54. Testing and RESUILSccooeriiriiiiiiiiiee e 72
5.4.1. Single Pattern Matching in a Single-Core SyStem...........ccceevevererereenennens 73

5.4.2. Multiple Pattern Matching in a Single-Core Systemccccoceceverieennennne 75

5.4.3. Multiple Pattern Matching in a Multi-Core System............cccceceeeeerernenens 77

5.5, CONCIUSION.....cutiitiiiieiieieetete ettt ettt ettt e e st e b e reessesaeebeessenseesnenns 78

6 Pipeline and process management SYSEMcccccovieveeeiereeeseiese e 81

i

6.1 TIEOAUCTION ..ottt e e e et eeeeeeeeeeesaeeeseeeeeeeeeneeeeseaaees 81

6.2 Pipeline and BUTfer.........c.covoiirieiiieieiecee e 82
6.3 Group Management PIpelinecccocvevuevierienieniiniinecieceeeeeeeeeeeee e 87
6.4 Measurement on the parallel SyStem.........cccccueeievieeieiieiereeeceee e 91
6.5 Test of the Pipelined SNOrt.........ccoovevieriirieniiieeeeee e 94
6.6 PCAP Capture BUTTer.........coouivieiieieeeeece et 99
6.7 Test of LIbPCAP external Bufferccocovevenenininieeeeeeeee 101
6.8 RESUIES REVIEW ...ttt s 102
6.9 SUMIMATYc.eiiiiieiieeeee ettt ettt ae st e besaeebesanens 104
IV, CONCLUSION ...ttt ettt st b et ne e 105
T CONCIUSION ...ttt 105
8 FULUIE WOTK. ...ttt 107
9 RETEIEINCES ...ttt 108

List of Figures

Figure 1: The MooTe’s Gap. [3]...ccecveeuerierieieieieieieieieie sttt ste et stesse s sbesbesbesbesaesnesnens 5
Figure 2: CPU power consumption vs. clock frequency, “In AMD’s process,
for 200MHz frequency steps, two steps back on frequency cuts power

consumption by ~40% from maximum frequency”. [4]cccocevereneneneneneneneenen 6
Figure 3: The architecture of @ Blue Gene/L. [5]....cccoceveririnenieriiieecececeeeeeeee e 6
Figure 4: The architecture of a Blue Gene/L ASIC processor. [6]......ccceeuevveevveneevieneerienenenne. 7

Figure 5: Three examples of multicore implementations, one showing two
identical CPUs, one with an RISC CPU and a DSP, and one with 16

1dENtICAl CPUS. [7] wooveeiieiieiecieieet ettt ettt et b e e s e e beeaa e reeanans 8
Figure 6: Diagram of a generic dual-core processor, with CPU-local level 1

caches, and a shared, on-die level 2 CaChe.........cooovviveiiiiiiiiiiieeeeeeeeeeeeeeeee 9
Figure 7: The ISO OSIMOdel. [8]....ecoieiieieiieieeeeeeeeete ettt 12
Figure 8: PDU and SDU in a protocol stack. [9]cccooueverierinieniiiieeeeeeeeeeee e 13
Figure 9: The data structure of PDU and SDU in the first four OSI layers. [10] 13
Figure 10: An example of Data RACE.ccevveriiriiniiriiieeeeeeeeee e 17
Figure 11: An example of Deadlock.cooiieieiiieiinieeciceceeeeeeee e 18
Figure 12: The data structure of the PDU and SDU in the first four OSI layers.

(27 ettt n ettt e et et b et s te st nenteneeteneas 20
Figure 13: The development history of pattern matching algorithms. [30]ccccocevvruennee. 21
Figure 14: Shift in the Prefix Algorithm (Knuth-Morris-Pratt).........ccccoeevevieviinieviieieieennnns 23
Figure 15: Shift in the Suffix Algorithm (Boyer-Moore).ccccovvevieireneeneniecneeeenene 25
Figure 16: A DFA built by BOM for Pattern “announce”. [10].......ccccceevverievienienieeieneens 26
Figure 17: Shift of the search window after the failure of the search by BOM.

10 3 RO U SRR SRRRRRSRPSTRN 26
Figure 18: Comparison of two ASCII characters in the memory...........cccccecevecincneencnnne. 27

Figure 19: Searching pattern “announce” in the text “anannouncenue” in a 16-
bit computer by the Bit-Parallelism (Shift-AND) Algorithm.

Characters are encoded in ASCIL..........ccccviiiiiniiiiniiinecececeeeeeeseeeaens 28
Figure 20: An AC automaton of pattern P = {announce, annual, annually}.

Double-circled states are terminal. [11].......c.cooveiviiieiieieeiieieeeececeee e 30
Figure 21: The Sub linear Multi-string Matching algorithm with example

patterns P = {announce, annual, annually}...........cccoeceririneninenineneeeceeeeeeeen 30

Figure 22: The pattern analysis of the Wu-Manber algorithm with example
patterns P = {announce, annual, annually} and the length of the block
ettt h et bt h et oAbt h et b et b et b et b et ebene 31
Figure 23: The automaton of SBOM for example patterns P = {announce,
annual, annually}. The factor oracle of the reverse set Plmin =

{announce, annual }. [T1] .coccooioiiiiiiiieieieeeeee et 32
Figure 24: Three patterns in a 32-bit computer for the MBP Algorithm.ccccenenee. 33
Figure 25: Three patterns in a 32-bit computer for the MBNDM Algorithm....................... 33
Figure 26: The architecture of the NIDS model by Zhuojun Zhuang.[56]ccccccoeenuenneee. 36
Figure 27: Adaptive Load Balancing Architecture of Snort by M. Shoaib

ATAIML [A2] ettt 36
Figure 28: A Stateful Real Time Intrusion Detection System by M.

Meharouech Sourour. [597] ...c.coviiiiiieeeeee s 37
Figure 29: The Snort primary processing module. [10]........ccecvevieierieriirienenienenereseeenn, 39
Figure 30: The Snort packet processing loop with the percentage of time spent

1N €ACH PhASE. [9] ..cuiieiiieieieiee ettt ene 39

Figure 31: The code structure of Snort for version 2.8 and 3.0beta.cccceveerereinennene. 40

Figure 32: The “struct” of @ Packet in SNOTL.c.cccuevieiiirieiicieeeeeeeeeeee e 42
Figure 33: The struct of SnortConfig in SNOTL.c.ocvevierierieniieeeeeeeeeeeeeee 44
Figure 34: The entry process 0f SNOTL.cccueiieriirieriieieseeese et eenens 45
Figure 35: The structure of the process functions of SNOTt.........ccccvevverierienienieneneeeeeeee, 47
Figure 36: An example of @ SNOrt TUle.c.eovieeieiieieeeeeeeeee e 49
Figure 37: The structure of theThree-Dimension Chain, 1* Classification Rule

TTEE. ettt ettt ettt s b e et ettt it 49
Figure 38: The division of an example rule in RTN and OTN..........cccecvevrininneneinenene. 50
Figure 39: The structure of the Fast Packet Detection Chain, 2™ Classification

RUIE TTEE. [14] ettt ettt a e s ae e eraeae s e nneeanans 50
Figure 40: Plug-in initialization chain created by re@iSter.cccccevveeveeieneerierierieeeeseeens 53
Figure 41: Plug-in action chain created by initialization from the plug-in

INIt1AlIZAION ChAIN.eiiiiiiiieie et 53
Figure 42: The defragment process 0f SNOTT.c.ccuevierierierienienienieieierereeese e 55
Figure 43: The struct of “OTNX MATCH DATA” in “InitMatchinfo”

FUNCHIONL. ..ttt ettt sttt 56
Figure 44: The structure of packets capture. [62]cceecereevieeeenieeiieneeieseeie et 59
Figure 45: The packet process structure of LIbDPCAP.cccooveviiiinienieeeeeeee 59
Figure 46: Data parallelization on Window shift algorithms on 4 processor

COTES. cueurmtemtentententententeteteteste b et e s e aebesaesb e b e b e sbe b e s b e s b e sbesbesaesbenbesbesbesbesaesbesbesnesbennens 64
Figure 47: Multiple Bit-Parallelism algorithm for multicore computers.cccoevvevennene 65

Figure 48: Search pattern “announce” in the text “anannouncenue” with one-

core in a 16-bit computer by Reversed Bit-Parallelism (Reversed

Shift-AND) Algorithm, n = 13, m = 10, ¢ = 1, w = 16. Characters are

encoded in ASCII. (Compare with Figure 7 to see the differences with

B) bbbttt 66
Figure 49: Searching pattern “announce” in the text

“anannouncenue.annannouncence” with four-core in a 8-bit computer

by the Reversed Bit-Parallelism (Reversed Shift-AND) Algorithm, n =

28, m =10, c =1, w= 16. Characters are encoded in ASCIL.c..ccoveevrreerreenenn. 69
Figure 50: Parallelized Aho-Corasick (PAC) algorithm with 2 cores, d =2.cccu.....e. 71
Figure 51: The performance comparison of single pattern matching algorithms

when the length of pattern is 7 characters, and the length of text varies. 73

Figure 52: The performance comparison of single pattern matching algorithms

when the length of the pattern is 3 characters, and the length of text

VATIES. .evteuteuienteutentententente e entestestente st ente st entensensentensenses e s e benbebensesbeesesbeebesbesbeebeesesbenaas 74
Figure 53: The performance comparison of single pattern matching algorithms

when the length of the pattern is 64 characters, and the length of text

varies. There are multiple OCCUITENCES.ccevverririeriiriieiecieeieeecteeeee e 74
Figure 54: The performance comparison of single pattern matching algorithms

when the length of text is 640 characters, and the length of pattern

varies. There are multiple OCCUITENCES.ccueveiemieieieieieieseee e 75
Figure 55: The performance comparison of multiple pattern matching. There

are 10 different patterns, and all patterns are in the teXt.........ccooevevereneninenenenene 76
Figure 56: The performance comparison of multiple pattern matching. There

are 100 different patterns, and all patterns are in the text.ccceeeveverinenenennene 77
Figure 57: The performance comparison of multiple pattern matching. There

are 100 different patterns, and all patterns are in the text.cccoeevererinenenennene 77

Figure 58: The processing flowchart of Snort, the left flowchart shows the
structure of official Snort 2.8; the right flowchart shows the pipeline

SEIUCTUTE O SNOTT. ..ottt e 82
Figure 59: The pipeline process 0f SNOTL.ccvecvieierieiierieieseee et 83
Figure 60: The circular buffer of the pipeline.ccccovievieviiiieiiniiieeeeeeee 84
Figure 61: The struct of “ePacketPack”.ccooieierieiieieeeeeeeeeeee e 85
Figure 62: The struct of a circular buffer.cccooveieiiiiiiiiieeeceee e 86
Figure 63: The pipeline process of Snort with multiple processes in some

PIPCS. 1evettetietiete ettt ettt te e et teete et et e et e et et e te et e s e et e st eseebe et e e b e ehees e et e ebeeseeseeseeseeseereeaeeneenas 87
Figure 64: The pipeline process of Snort with multiple processes, all

inspection and OULPULS A€ 1N ONE PIPE. .c.ververrerrerrerrerierrerierierteereereereere e ereereereeseeseeneas 88
Figure 65: One processor writing into multiple buffers............cccoeevievieciiniecenieeeeees 89
Figure 66: The pipeline process of Snort with multiple processes. Normal

inspection and reassembled inspection are in two different pipes.ccceeveevennenne. 89
Figure 67: One processor collects (reads) data from multiple buffers.ccccvvereinenee. 90
Figure 68: The pipeline process of Snort with multiple processes, All

inspections are in one pipe and the outputs are in a different pipe.cccccevuenenee. 90
Figure 69: The processing time and waiting time in a simple parallelized

SYSLRITL. .euutentieiietieteett et et et et et e et e st e et e s bt et e s st enbe e st e besat e beeat e beenbesbeenbeeaeentesaeenbesaeenee 91
Figure 70: An example of a buffer pipeline SyStem..........ccceevvereevieriienieieceeeeeee e 92
Figure 71: Snort rules set used for the tests..........cecuerierierierienieieeeeee e 95
Figure 72: The inspection speed of original sequential Snort on the Intel

COTMIPULET. ...uvevtenteeuteteetesteesteetteteeateteestesseesteseeasesseensesstensesseensesssensesnsenseensenseensenseenes 96
Figure 73: Snort test structure SOT (1H14144). wooiiiieieieeeeeeeeeeeee e 96
Figure 74: The inspection speed of Snort SO1 (1+1+144). c.oveveviieiieieeceeeeeeeeee, 97
Figure 75: Snort test structure SO2 (1H143).uieiiiieieieeeeeeeeee et 97
Figure 76: The inspection speed of Snort S02 (14+143)...c.cviiiiniininirccenceeeeeee 98
Figure 77: Snort test structure SO02 (1H142)..c.eiiiiiiiieieieieeeeeeeee e 98
Figure 78: The inspection speed of Snort S02 (14+142) ..c.eveiiinioininiiinccenceeereeeee 99
Figure 79: Packet buffer schematic of LIDPCARP.........cccccovieiiieriiieeeeeeeeeee 99
Figure 80: An external Packet buffer schematic of LIbPCAP..........ccccoccoviniinninninnne. 100
Figure 81: A list of primary functions for the external buffer in LibPCAP........................ 100
Figure 82: The inspection speed of Snort ST1 (1+1+144). oo 101
Figure 83: The inspection speed of Snort S12 (1+143) i 101
Figure 84: The inspection speed of Snort S12 (1+142)..cceciiiiiinciricicencceece 101
Figure 85: The inspection performance comparison using an external buffer in

LADPCAP. ...ttt ettt s s s e se s seeseneens 102
Figure 86: Snort 2.8.x offline test performance result for 32KB packet............cccceeeuenneee. 103

vi

List of Tables

Table 1: An approximate speed list with data transmission on a Intel Duo-core
2.33 GHz CPU with a DDR2 667 asymmetric dual channel memory

SYSLRITL ..ttt ettt ettt et et et e et e s bt et et e e b e s bt et e sae et e ese e b e en e e bees b e beentenbeentenaeenes 16
Table 2: Typical Snort Detection PIUGINScccceeieiiieiiniieieceeeeeeeeeee e 57
Table 3: RBP vs. Bit-Parallelism (BP)........ccccccueiuiiiiiieiiceeeeeeeeeee e 69
Table 4: The number of states in the automaton vs the size of “d” in the PAC

AIGOTIERIMLiiiiiieieee ettt sbe bbb 72
Table 5: RBP vs. Windows-Shift (e.g. BM, KMP, Horspool)cccceeveeviincieniecienieienens 79
Table 6: The states of circular buffer.ccoccevvieviiiieiiceeee e, 84

vil

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Professor Dr. Harsha
Sirisena from the Electrical and Computer Department in University of Canterbury, Dr.
Zhiyi Huang from the Computer Science Department in University of Otago for their
guidance, invaluable support and constant encouragement. Their time and effort in
providing me with research direction, research ideas and suggestions, real testing

computer environment, and other uncountable aspects, is very much appreciated.

My special thanks to Professor Dr. Krzysztof Pawlikowski, Dr. Allan Mclnnes, Dr.
Andreas Willig, and all the members in the network research group from the University
of Canterbury for their enlightening advice and wonderful discussion during the weekly
meeting, and all members in the system research lab from University of Otago for their

help.

I am also grateful for the Electrical and Computer Engineering Department in
University of Canterbury and Computer Science Department in the University of Otago
for providing me an excellent work environment and equipment during the past years.

And special thanks to, David van Leeuwen, Tony Dale and all other computer staffs.

I also want to express my acknowledgements to Industrial Controls South Canterbury to

support my studying in different aspects.

Lastly, thanks to any other people and organizations that provide me help and support

during my studying and Christchurch earthquake periods.

viii

Glossary

AC algorithm
ALU

ANSI

API

ARP
ASCII
ASIC
BDM
BNDM
BogoMips

BO

BOM

BM algorithm
BP

Cilk

CPU
CRC
DDos
DFA
DMZ
DPI

DoS
FDM
FPGA
GbE
HIDS
HIPS
HTTP
Horspool
ICMP
IDS
IEEE
IEEE 802.1Q
IIN

1P

IPS

KMP
LibPCAP
Maotai

MBNDM
MBP
MIT

MPI

Aho-Corasick algorithm

Arithmetic Logic Unit

American National Standards Institute

Application Programming Interface. It serves as an interface between
different software programs.

Addtess Resolution Protocol

American Standard Code for Information Interchange
Application-specific integrated circuit

Backward Dawg Matching Algorith

Backward Nondeterministic Dawg Matching

Bogo Million instructions per second, an unscientific measurement of
CPU speed made by the Linux kernel when it boots, to calibrate an
internal busy-loop.

Back Orifice, remote administration software

Backward Oracle Matching algorithm

Boyer-Moore, a multiple pattern matching algorithm

Bit-Parallelism algorithm

A general-purpose programming language designed for multithreaded
parallel computing by MIT.

Central Processing Unit

Cyclic Redundancy Check, an error-detecting code

Distributed Denial-of-Setvice attack

Deterministic Finite Automaton

Demilitarized Zone in Computer Networking

Deep packet inspection

Denial-of-Service attack

Forward Dawg Matching Algorithm

Field-programmable Gate Array

Gigabit Ethernet

Host-based Intrusion Detection System

Host-based Prevention Detection System

Hypertext Transfer Protocol

a multiple pattern matching algorithm

Internet Control Message Protocol

Intrusion Detection System

Institute of Electrical and Electronics Engineers

Virtual LAN or VLAN

Internet Information Services, a set of Internet-based services for
servers using Microsoft Windows

Internet Protocol

Intrusion Detection System

Knuth-Morris-Pratt pattern matching algorithm

An open source packet capture library

A shared memory multiprocessing programming API designed by the
University of Otago for multicore computers.

Multiple BNDM algorithm

Multiple Bit-Parallelism algorithm

Massachusetts Institute of Technology in US

Message Passing Interface

X

MTU
NFA
NIDS
NIPS
OpenMP

OS
OSI
OTN
PAC
PCAP
PDU
PHAC
POSIX

Qos

RBP
RISC
RTN
SBDM
SBOM
SDU
SNMP
Snort
SPARC

SQL
TCAM
TCP
™
UDP
VODCA
VOPP

VolP
WebDAV

Maximum Transmission Unit

Nondeterministic Finite Automaton

Network-based Intrusion Detection System

Network -based Prevention Detection System

Open Multi-Processing, an API that supports multi-platform shared
memory multiprocessing programming,

Operating System

Open Systems Interconnection model

Option Tree Node

Parallelized Aho-Corasick algorithm

Packet Capture

Protocol Data Unit in ISO OSI model

Parallelized Hashed AC

Portable Operating System Interface for Unix. It is a family of related
standards specified by the IEEE to define the APL

Quality of service

Random-access Memory

Reversed Bit-Parallelism algorithm

Reduced Instruction Set Computer

Rule Tree Node

Set Backward Dawg Matching

Set Backward Oracle Matching

Service Data Unit in ISO OSI model

Simple Network Management Protocol

An open source IDS/IPS softwate, www.snott.org

Scalable Processor ARChitecture, a RISC microprocessor instruction
set architecture

Structured Query Language, a database computer declarative language.
Ternary Content Addressable Memory

Transmission Control Protocol

Transactional Memory

User Datagram Protocol

View-Oriented, Distributed, Cluster-based Approach

View Oriented Parallel Programming, a shared memory
multiprocessing programming API designed by the University of
Otago.

Voice over IP

Web-based Distributed Authoring and Versioning

I. INTRODUCTION AND BACKGROUND

1 Introduction
1.1 Computer Network System and Its Security

Communication has always been an important part of human development and a spoken
language gives people the ability to have face to face communication. Later, people invented
writing letters and beacon towers to solve the distance issue and from the 20" century,
information gathering, processing and distribution have become the key technology. People
invented the telephone and built telephone networks to have long distance and instant
communication. The invention of the radio enabled communication to get rid of the cable
restrictions and then, the birth and growth of the computer industry accelerated the

development of information processing and communication.

Although the development of technology greatly reduces the distance of people, longer
distance and more media also bring more security issues for the communicators. Usually, face
to face speaking can only be bugged, but the speaker’s speech cannot be modified; in letter
communication, the message can also be forged by similar handwriting, but it is still difficult.
The development of attacking technology came from telephone networks. In order to make
unpaid calls, some people tried to find some telephone system bugs, and some experts even
broke into the provider’s accounting system and modified their records. In the computer
network era, hackers also invent computer viruses, worms, spywares, and backdoors to
destroy, steal data, block the network, advertise on, and control remote computers. On the
Internet, an attacker can do almost everything they want from the other side of the earth. And
they can easily hide themselves by controlling one or a group of zombie computers (usually

called “Botnet”).

On the other hand, most of the intruders started only from personal interest and in the pursuit
of higher skills. Even so, now, because of the huge benefits, the attackers are becoming a new
industrial chain. They are professional, and sell their products and services on the Internet. A
person with very limited skills can buy and download some attack tools to perform attacks, or
employ Botnet to storm off the network. Even an unskilled person can easily find some

professional attackers to perform attacks for them on the Internet.

A study by Michel Cukier from Clark School, University of Maryland in February 2007 was
“one of the first to quantify the near-constant rate of hacker attacks of computers with Internet

access—every 39 seconds on average”. [1]

1.2 Intrusion Detection / Prevention System

Historically, because several major computer viruses have caused huge global losses, people
are starting to recognise the importance of anti-virus software. How do they have the virus?
Some computers have them by web browning, email and malware. However, some
computers, such as servers, without internet access can also get backdoor and data stolen by
attacks. A basic firewall can only block some ports on data-link layers and IP addresses on
network layers, but cannot see anything on the application layer. Without seeing the detail of

the packets, it is difficult to distinguish between a normal access and an attack.

The intrusion detection system (IDS) is a tool which has the ability to read the detail of the
network packets. The IDS analyses network packets, captured from the network to identify
attacks. The Intrusion Prevention System (IPS) will also automatically block the attacks.
Now, IDS/IPS has become a necessary addition to the security infrastructure of most

organizations.

Basically, an IDS/IPS can be divided into host-based and network-based. A host-based
IDS/IPS (HIDS/HIPS) such as traditional anti-virus software, which operates on information
collected from within each individual computer system, can be used to detect or block attacks.
However, it has two disadvantages. Firstly, HIDS/HIPS spends too many CPU resources on
the host computer, and the benefit can only be received by itself. Secondly, HIDS/HIPS
cannot prevent attacks to the network devices such as switches and the intruder can also sniff
the packets during data transmission in the network. A network-based IDS/IPS (NIDS/NIPS),
which captures and analyses network packets on a network scope can be used to detect all

attacks in the network, and all trust domains can receive the benefit.

In general, there are two main intrusion detection techniques: misuse detection and anomaly
detection. Misuse detection identifies evidence of malicious behaviour by matching it against
predefined descriptions of attacks, or signatures. It has a low false alarm rate and a high miss
detection rate. Anomaly detection defines normal behaviour and attempts to identify any
unacceptable deviation as possibly the result of an attack. Although anomaly detection has a
low miss detection rate, and can detect new attacks, however, it has a high false alarm rate.
Misuse detection usually contains a group of signatures, which are used to identify different
attacks. The limitation in implementing misuse detection is the high processing load during
the traffic detection, which causes a much lower packet forwarding rate in the network than

the normal layer-3 switch.

Snort is a lightweight open source network intrusion prevention and detection system
(IDS/IPS) developed by Sourcefire [2] and is mainly based on a misuse detection mode. It is a
well-designed completed IDS and IPS (the inline mode of Snort) solution for a general
purpose CPU, such as x86/x64. It supports both [Pv4 and IPv6. However, because of its pure

software design, it has a relatively slower processing speed compared with ASIC and FPGA.

On the other hand, it is more flexible and has a lower deployment cost, as on the ASIC
platform it is almost impossible to make any update and the FPGA is also difficult to upgrade.
At this point, many world famous commercial IDS/IPS products are made by a general

purpose CPU, such as Cisco.

Currently, Snort is designed as a single process for the detection process, only the reload
module uses a separate thread to track the modification of the configuration file and rule
update. It was an excellent design last century, but has become a little old now, as the CPU
frequency is hard to increase any more, and the performance of a sequential process design is
also difficult to improve with the same algorithm. Parallelization is a method which can be

used to increase the performance of Snort.

1.3 Multi-core and Parallelization

The earliest computers were programmed by altering the electronic circuitry. In 1945, John
von Neumann proposed EDVAC (Electronic Discrete Variable Automatic Computer)
architecture which recommended the use of binary as the computer language, and introduced
the memory system in the computer to store both instruction sets and data. Today, computers
still inherit the John von Neumann architecture. Therefore, the speed of a computer is not

only decided by the CPU frequency, but is also based on the speed of the memory and cache.

In 1965, Gordon E. Moore introduced the famous Moore’s Law: “the number of transistors
that can be placed inexpensively on an integrated circuit has doubled approximately every
two years”. Moore’s Law applies to any semiconductor products including a processor’s
performance and its processing speed, memory capacity, and even the power consumption of
the processor which has a similar increase period. History has proved the accuracy of
Moore’s Law. However, Moore’s Law stopped working on the processor’s operating

frequency from the middle of the 20th century. On 20th October 2004, Intel CEO Dr Craig
4

Barrett, begged forgiveness for not making a 4GHz Pentium 4, and Intel's product roadmap

was substantially revised from the higher frequency development to multi-core chips.

What about the overall increase in performance? Anant Agarwal and Markus Levy indicated
a “Moore’s Gap” in 2007 and Figure 1 shows the gradually expanding gap from 2002. They
analyzed that “the performance scaling fell apart in 2002 due to three factors, namely
diminishing returns from single CPU mechanisms such as caching and pipelining, the power
envelopes (both active and leakage related), and wire delay.” Their suggestions to close the
Moore’s Gap are multiple full-fledged cores on the same CPU and ample parallelism

algorithms. [3]

Transistors

1,000

SMT, FGMT, CGMT

Performance (GOPS)

0.01 E

1992 1998 2002 2006 2010
Time

Figure 1: The Moore’s Gap. [3]

From the 1960s, people began to develop supercomputers. A supercomputer usually has a
much higher computing power than an ordinary computer in the same era, but it does not
mean it runs a program faster. A supercomputer is usually built by vector processors, or a
cluster of ordinary processors, and these processors are connected not through a high speed
bus, but a single processor with a super high operating frequency, instead. And the frequency
may be lower than ordinary processors for power efficient reasons. Figure 2 shows the
relationship of a processor’s power consumption and operating frequency. It shows the

processor’s power consumption increases exponentially with an increase in the processor’s

5

operating frequency. Therefore, a single sequence program may run more slowly on the super

computer.

15

0.5

Power
Consumprion

>
n-5 n-4 n-3 n-2 n-1 n
Frequency (Gross relative numbers summarized
from a mountain of real data)

Figure 2: CPU power consumption vs. clock frequency, “In AMD’s process, for 200MHz frequency
steps, two steps back on frequency cuts power consumption by ~40% from maximum frequency”. [4]

Blue Gene/L chip Node board
BG/L chip: Node board:
2x PPC 440 cores 1x Node board
5.6 Gflops 16x Compute cards
32x BGI/L chips
64x PPC 440 cores
8 GB RAM
Compute card 180 Gflops
Compute card: i
D E E [I 1x Compute card side top
2x BG/L chip

T T 4xPPC 440 cores

11.2 Gflops
hot
Rack a'ir Complete Blue Gene/L System
I Rack: Complete System:
32x Node boards - 00 64x Racks
C——— E—J| 512x Compute cards 2,048x Node boards
=== =—==1 1,024x BG/L chips 16,384x Compute cards
——1 E==J] 2,048x PPC 440 cores 32,768x BGI/L chips
256 GB RAM g w0 / 65,536x PPC 440 cores
5.7 Tllops 16 TB RAM
] b 360 Tflops
cool front side

air

Figure 3: The architecture of a Blue Gene/L. [5]

For example, a Blue Gene/L has 360 TFLOPS computing power. It contains 64 racks and
each rack is built by 32 node boards. Each node board includes 16 computer cards and each
computer card has two duo-core PPC400 processors. Refer to Figure 3 and Figure 4. There

are in total 65536 cores, and the frequency of the processor core is only 700 MHz. Each core

has 5.6 GFLOP. Compared with a supercomputer, an ordinary quad-core processor Intel Core
17 965 XE has 70 GFLOPS in double precision, and each core is about three times faster than
a single core in a Blue Gene supercomputer. Basically, supercomputers require the support of

the parallelization in software, which can distribute a single huge job to different processors.

Blue Gene/L ASIC
440 core 440 core
CPU 1 CPU 2
L1 L1 L1 L1
D-cache I-cache I-cache D-cache
A A
© L3
& .
| v [) v [v |
Lw L2R Bus Bus L2R L2w
7Y interface interface Iy
Scratch Locks
SRAM
\4 A4
L3 cache (embedded DRAM)
Main store

Figure 4: The architecture of a Blue Gene/L. ASIC processor. [6]

From the history, we can see that today’s super computer will be tomorrow’s ordinary
computer. As the processors are made smaller, it will be possible to have thousands of cores

built in one single processor, and hundreds of processors in one computer. In recent years,

people have been working on integrating multiple cores into one processor to achieve a higher

overall performance.

In 2002, Intel introduced its Hyper-Threading technology in Foster MP-based Xeon
processors. Actually, it is not a type of multi-core processor as Hyper-Threading duplicates
certain sections of the processor, in order to have two "logical" processors to the operating
system, which allow the OS to schedule two threads simultaneously. However, it only has one
execution unit. The scheduled threads have to queue to be executed by the single execution
unit. This technology is also called “multi-thread” by some other companies, such as Sun

Microsystems.

Multi-cores computers have real multiple execution units and an individual (L1) cache for
each execution unit. It looks like a pizza shop in that there are two chefs but only one oven in
the hyper-threading system; there are two chefs and also two ovens in the dual-core system.
The multi-core processor puts a number of processors onto a single integrated circuit die, or
onto multiple dies, but in a single-chip package they usually share one higher level cache

between some of the processors. Some examples are shown in Figure 5 and Figure 6.

S :ﬂ-ll :!II =.5|| gll

—T— AIHII J'lIHII

e .;Il:.all_.;ll:.an

Figure 5: Three examples of multicore implementations, one showing two identical CPUs, one with an
RISC CPU and a DSP, and one with 16 identical CPUs. [7]

Dual CPU Core Chip

CPU Core CPU Core
and and
L1 Caches L1 Caches

Bus Interface
and
L2 Caches

Figure 6: Diagram of a generic dual-core processor, with CPU-local level 1 caches, and a shared, on-die
level 2 cache.

Another type of computer system has multiple sockets in one system. The processors in
different sockets do not share any cache, but they usually share the memory and memory bus

on the same motherboard.

Because a supercomputer is also super expensive owing to the consistency of the design, a
computer cluster is designed for powerful computing power. A computer cluster is built by a
group of ordinary computers and connected through Ethernet or even through the Internet. A
group of retired computers can also achieve very powerful computing power with computer
cluster technology. People also expand its use to invent a new computing architecture, and
give it a beautiful name “cloud computing”. Many enterprises have super huge groups of
computers, called “clouds”. For example, Google had over 450,000 computer clusters in

2006.

In all of the above technology, many people thought the multi-core processor was a good
solution. Now, many processor companies, such as Intel, AMD and Nvidia, try to increase the
number of processor cores rather than the frequency. In the future, it will be possible to have a

9

very large number of cores, such as hundreds or even thousands of cores, in one single
processor. However, the frequency may not change much. In order to reduce the power

consumption, the frequency may be lower than the current frequency.

The running speed of a sequence program is generally decided by the frequency of the CPU.
However, a multiple processors computer cannot help to increase the speed of a sequence
program. Currently, because the number of processors in a single computer system is not very
high, and it normally runs multiple programs simultaneously; different processors can be used
to assign different programs by the operation system. With the improvement in technology,
the number of processors in a single system has become much higher. Many processors will
not get any work from the operation system if all programs are sequence programs. Therefore,
parallelization of a sequence program is becoming more important. For many big jobs, it will
be easy to parallelize them on their data level. However, for some jobs, it will be difficult to

split them up into smaller parts and work on them simultaneously, such as a state machine.

1.4 Research Goals

This thesis will focus on the parallelization of network deep packet inspection programs. As
Snort is a world famous open source typical deep packet inspection based intrusion detection

system, this thesis will use the parallelization of Snort as an example.

Currently, Snort is still a sequence program. Some types of parallelization have been
implemented by researchers on FPGA and some special network processors. However,
almost none of them are based on a general processor. This thesis will attempt to find and
evaluate some possible methods of Snort parallelization on general computers, such as the
x86, x64 and RISC systems. Also, all designs and tests have been carried out in a Linux

environment with kernel version 2.6.

10

At the end of this thesis, the detection performance (throughput) is expected to be increased
by parallelization processing. However, as this thesis will not focus on the detection method

and signature design, the detection rates and false alarm rates will not change.

1.5 Dissertation Structure

In the following section of this thesis, some background information and some previous work
in this area will be discussed. Some mechanisms related to the design in the later chapter will
be discussed in detail in Chapter 2. Then, the structure and mechanism of Snort and LibPCAP
will be analysed in Chapter 3 and Chapter 4 respectively. Later, the possibility of pattern
matching parallelization on a general computer will be discussed in Chapter 5 and a packet
level parallelization of Snort and LibPCAP will be evaluated in Chapter 6. Finally, a

conclusion of this thesis and some possible future work will be given.

11

2 Background and Related Work
2.1 Network Packets and “libpcap”library

In general, a network packet is a formatted unit of data transmitted in the computer network.
It is defined by the International Organization for Standardization (ISO) in the Open Systems
Interconnection model (OSI model) for the network structure. The OSI model divides a
communications network system into seven layers, as shown in Figure 7. Each layer is a
collection of similar functions that provide services to its upper layer and receive services

from its lower layer.

| OSI Model |
| || Data unit || Layer || Function |
7. Application |[Network process to application
Data representation, encryption and
Data 6. Presentation |[dectyption, convert machine dependent
Host data to machine independent data
layers =
5. Session Interhost communication
End-to-end connections and reliability, flow:
Segments|[4. Transport
control
Packet ||3. Network Path determination and logical addressing
Media Frame ||2. Data Link ||Physical addressing
layers
Bit 1. Physical Media, signal and binary transmission

Figure 7: The 1ISO OSI model. [8]

The IEEE 802 standards also define the data structure in each OSI layer. In an OSI layer, a
service data unit (SDU), which is a unit of data, will be passed down to a lower layer, and
then be encapsulated into a protocol data unit (PDU) by the lower layer in the sending entity;
and the PDU will be decapsulated into the SDU for the upper layer in the receiving entity. In
most cases, the SDU corresponds to the PDU of the upper layer. However, they are different
in some cases. Sometime, the SDU is bigger, and the protocol in the upper layer requires a
smaller PDU, so then this SDU will be divided into multiple PDUs. When a PDU requires a
bigger size than the SDU, then multiple SDUs will be combined into one single PDU. The

12

protocol stack is shown in Figure 8, and a one to one PDU/SDU data structure is shown in

Figure 9.
Sending entity 1 Receiving entity
Layer N+1
Y [sou sou_|
4
| PDU [‘———————— PDU |
e ¥ (LayerNSAP) 4
ayer
¥ [sou sou_|
layer N layer N 1
fun)r‘;tions fun)t’:tions 2
[pou f—-———F———~{ Pou |
— i (Layer (N-1) SAP) 4
ayer N—
Y SDU sbu_|
[
| PDU ————————"{ PDU |
Figure 8: PDU and SDU in a protocol stack. [9]
Physical Layer PDU (PPDU) — A group of Bits
Preamble Start of Frame Physical .
Sequence Delimiter Header Physical Layer SDU (PSDU)
Data Link (MAC) Layer PDU (MPDU) — A Frame
Frame Seq Address . Frame Correction
Control Field| # Field Data Link (MAC) Layer SDU (MSDU) Sequence
Network Link Layer PDU (NPDU) — A IP Packet (e.g. IP protocol)
Version |Parameters| Protocol Header IP address |Options Network Layer SDU (NSDU)
Checksum
Transport Layer PDU (TPDU) — A Segments (e.g. TCP or UDP protocols)
P;rt qu Parameters | Options Transport Layer SDU (TSDU) -- Data

Figure 9: The data structure of PDU and SDU in the first four OSI layers. [10]

In the OSI model, layer 1 generally performs the conversion of logical digital bits and a group
of signals, such as electrical signals or optical signals, and transfers it in different coding

13

theories. A network device usually works from layer 2 to layer 4, e.g. an unmanaged switch is
working in layer 2; a router is working in layer 3; and a basic firewall is normally working in
layer 4. The deep packet will work in layer 7. However, as layer 5 and layer 6 are not used in

the IP protocols, the transport layer SDU is usually the application layer PDU.

Snort uses the “libpcap” library for the packet capture. The data read from the physical NIC
card is the PDU of the data link layer. “Libpcap” calls the driver of NIC and gets the SDU of
the data link layer. Finally, the output data of “libpcap” is the PDU of the network layer.
Snort reads the packets (PDU of the network layer) one by one, and then uses its decode
module to get all header parameters of the network layer, transport layer and application layer
for the single packet as the header information, and the SDU of the application layer as the
packet content. For the packets in which one SDU is not corresponding to a single PDU,

Snort will make the packet and process it in the packet reassembly part.

As the IP protocols are the primary layer-3 protocols in the world now, only IP protocols and

its family members will be considered in Snort in this thesis.

2.2 Parallelization Algorithms

In general, there are two major techniques to distribute a single job into different processors:
multi-processing and multi-threading. Multi-processing technology uses “fork™ to create an
additional separate process manually in order to execute all later code after the process has
been created, like running a new program. The idea of multi-threading technology is dividing
a single big job into multiple small tasks, which can be scheduled to be executed by the
operating system. Although, on a single core single processor system, the tasks will still be
executed by a single processor by a time-division multiplexing, multi-threading can also

increase the utilization of a single processor core by leveraging thread-level and instruction-

14

level parallelism. On a multi-threading and multi-processor enabled system, the multiple tasks

will be distributed into different processor cores.

A main difference between multi-processing and multi-threading techniques is that a program
running by multi-processing is actually executed by multiple processes in the operations
system; but multi-threading will only use one single process to execute the program even on
multiple processors. Therefore, different processors will have their own memory and cache
space for the same variable name on a multi-processing system; on a multi-threading system,
several threads work on the same set of data and also share their cache by default, which has a

better cache usage or synchronization on its values.

Sometimes, different processes need to exchange some information between different
processor cores. There are generally two methods for this: “Message Passing” and “Shared

Memory”.

“Message Passing” is a kind of communication mechanism by which processes can send and
receive messages from other processes. It is just like multiple people working on one job
together by communicating the progress, ideas and everything related to the job. The type of
message includes the form of signals, data packets and so on. Message Passing Interface
(MPI) is the most famous “message passing” API for parallel computing. It works on almost
any type of platform, including multi-core, multi-thread systems, supercomputers and even

computer clusters.

“Shared memory” sets a piece of memory as a public area, which can be simultaneously
accessed by multiple processes. It works on a very low level, as the memory operation is the
responsibility of an operation system. Linux kernel natively supports some methods to set up

a shared memory area, such as “IPC Shared Memory (ipc.h)” and “POSIX Shared Memory

15

(shm.h)” and “mmap”. A shared memory system is relatively easy to use since all processes
share a single view similar to memory access to the same location. However, there are some
limitations to the “Shared Memory”. Firstly, the current computer architecture is not cache
coherent. Secondary, the data accessing by different processes will also cause a memory
coherence issue. Then, the execution method of the processor will cause “Data Race” and

“Deadlock™.

Cache memory is a random access memory (RAM) usually on the CPU that a processor can
access more quickly than a regular RAM. In the data processing, the processor looks first in
the cache (from a previous reading of data), and reads the RAM if the required data is not
found in the cache by spending more time. Table 1 shows a general data accessing speed in a
normal computer system. Data updated by one processor may be used by other processors,
and the change needs to be reflected in the other processors at the same time, otherwise the
different processors will be working with incoherent data. In a system in which the cache is
not shared, there is usually a delay on the cache coherence.

Table 1: An approximate speed list with data transmission on an Intel Duo-core 2.33
GHz CPU with a DDR?2 667 asymmetric dual channel memory system

Speed (ns)

L1 cache reference 1
Branch mispredict 5
L2 cache reference

Mutex lock/unlock 50
Main memory reference 50
Read 1 MB sequentially from memory 250,000
Disk seek 10,000,000
Read 1 MB sequentially from disk 30,000,000

In addition, an Arithmetic Logic Unit (ALU) of the processor will also not directly use data in
a cache; it needs to read the data into some register in the processor and executes them from

registers. The register is a small set of data holding places that are part of a computer

16

processor. It is the closest storage unit from the ALU in the processor. The reading and
writing process by different processes from and into the same memory location will cause

“Data Race”. An example is shown in Figure 10.

Thread #1 Thread #2 Note
CStatement | X = X+1 X=X+1 Two process try to update the same "X"
LOAD X,R1 X=0,R1=0
] INCR1 R1=1
Instructions \"ernpe Ry X R1=1,X= 1
in the right
order LOAD X,R2 X=1,R2=1
INC R2 R2=2
STORE R2, X R2=2,X=2
LOAD X,R1 X=0,R1=0
' LOAD X,R2 X=0,R2=0
Instru:I:'tlons INC R2 R2=1
when "Data
Race" STORE R2, X R2=1,X=1
INCR1 R1=1
STORE R1, X R1=1,X=1

Figure 10: An example of Data Race.

A solution to solve “Data Race” is forcing the atomicity of a group of instructions. Currently,
mutual exclusion and transactional memory (TM) [12][13][14][15] can be used to guarantee
the atomicity. Mutual exclusion is a traditional pessimistic approach method. The writer has
the onus to make sure the shared variables are not being used by some others. A process or
thread can lock shared variables before writing or reading, and unlock them at the end of
accessing. And all other processes or threads cannot access these locked variables. They
usually have to wait or sleep until the designed variable is available again. In the case of more
than two processes or threads working on one shared variable, the possibility of accessing
crash will increase exponentially with the increase in the number of processes or threads.
“Semaphore” and “Mutex” are two API of mutual exclusion. However, when locks are
nested, deadlock can happen. Deadlock is a situation where threads or processes are waiting

for locks that will never be released.[18] An example is shown in Figure 11.

17

Note (Thread #1) Thread #1 Thread #2 Note (Thread #2)
Acquire lock 1 Acquire lock 2

Waiting for lock 2 forever Waiting for lock 1 forever as
as lock 2 has already been lock 1 has already been
locked by Thread 2, but locked by Thread 1, but
Thread 2 is also waiting. Acquire lock 2 Acquire lock 1 Thread 1 is also waiting.

Figure 11: An example of Deadlock.

Transactional memory (TM) is an optimistic approach which was designed in the late 1980s,
and is reaching maturity now. Differently from “locking” techniques, TM allows multiple
threads or processes to perform modifications to the same shared memory without regard for
any other threads or processes, and it is “Data Race” and “Deadlock” free. However, it
records every read and write by different threads and processes in a log. The idea is a little
similar to a journal file system, such as NTFS, ext3, JFS and ReiserFS. The reader will have
the onus of verifying if any others have concurrently “write” access to the same memory
when it completes an entire transaction. If there is no other “write” access, then the
transaction will be committed as permanent, otherwise, it will roll back, and revise the
transaction. As no threads or processes are required to wait for access to any resource,
multiple threads or processes can continue to work concurrently. In the case of no
modification in the shared memory, the performance of TM is very high. However, there are
usually quite a number of repeated transactions in the real practice. In addition, the
management overhead, e.g. maintaining the log and committing transactions, is still quite

high in software based TM.

In a multi-thread/ multi-process environment, it will be hard to control the progress of each
thread or process. For example, when two threads are assigned a job to acquire a lock on the
same shared variable at the same time, both of them will have a chance to acquire the lock
first, but the shared variable can only be locked by one thread. The other has to wait. As the

order of which thread locks the shared variable is random, it is called a “determinacy race”.

18

Some synchronization methods can be used to solve this issue, such as “barrier” (or “fence”

sometimes) and “messages”’.

As the basic pessimistic approach shared memory has a few limitations and difficulties in use,
some APIs are designed to avoid the “Data Race” and “Deadlock”, and simplify the
synchronization process. OpenMP is an API which makes the implementation of shared
memory parallel programming much easier. However, it is only designed to optimize the

performance of “for” loop in the program. [11][16]

The University of Otago has designed a series of View Oriented Parallel Programming
(VOPP) [17]-[22] APIs, which include VODCA [23] and Maotai [24][25]. VOPP is a process
based shared memory parallel programming API, and it can automatically prevent “Data
Race” and “Deadlock”. VODCA is specialized for a cluster system; and Maotai is specialized

for a multi-core computer.

Cilk was designed by MIT in the middle of the 1990s and is a multithreaded parallel
programming language based on ANSI C. It is designed for general-purpose parallel
programming, but is especially effective for exploiting dynamic, highly asynchronous

parallelism, which can be difficult to write in data-parallel or message-passing style. [26]

Different API and penalization methods have different performances. However, Gene
Amdahl said that “the speedup of a program using multiple processors in parallel computing
is limited by the time needed for the sequential fraction of the program”. Amdahl's law can be
used to predict the theoretical maximum speedup using multiple processors in parallel
computing. Generally, the speedup of a program is limited by the time needed for the
sequential fraction of the program. The formula is shown in Equation 1, and a speedup graph

vs. the number of processors is shown in Figure 12.

19

Speedup =

1

1

1—

7=

T

p
s+ =
S’ n

Where 75+ 1, = 1, 75 represents the ration of the sequential portion in one program, and

f=(1-7)n

Equation 1

-

[
||H
-

Speedup (n)

Amdahl's Law
Law of Diminishing Returns

B

n processors

Figure 12: The data structure of the PDU and SDU in the first four OSI layers. [27]

2.3 Pattern Matching Algorithms and Detection Engine

Deep packet inspection is actually a type of pattern matching process and pattern matching is

also the primary part of the detection engine of IDS. A highly efficient pattern matching

algorithm will lead to a high performance IDS.

In general, the string matching includes exact string matching and approximate string

matching (string matching allowing errors).

The one-dimensional exact string matching consists of [29] (1) Single String Matching, the

most basic string matching algorithm, searches for a single pattern (p) with “m” characters in

a text string (t) with the length “n”. Both strings are built over a finite set of characters (o)

denoted as alphabet (). (2) Multiple String Matching searches for a set of pattern P

20

simultaneously. (3) In Regular Expression Matching, the pattern is described by the regular
expression. This is the most complex matching, a single regular expression can describe

thousands of different normal patterns. Regular expression is now widely used in the IDS.

2.3.1. Single Pattern Matching Algorithms

The single string matching algorithm is the kernel of the general string matching and includes
regular expression matching and approximate string matching. Figure 13 shows some
historical main string matching algorithms. In general, the hundreds of single string matching
algorithms in the world can be classified into five categories: (1) Brute Force; (2) Hash; (3)

Automata; (4) Sliding Window (Prefix & Suffix); (5) Bit-Parallelism.[29][31]

Year

Baeza-Yates/
1992 | Cole-Hariharan Perleberg
4 Hume-Sunday

Colussi-Galil- Baeza-Yates/ Sunday

1990 Giancarlo Cole Gonnet
\

Baeza -Yates/

1988 Regnier Gonnet Baeza-Yates,
Vaeza—YagteS/ Gonnet

/’

1986 Apostolico-
Giancarlo

1980 Karp;Rabin

alil /
4 Rytter
Fischer-
Patterson
Knuth-Morris-Pratt
1970 >

Theory Practice

Figure 13: The development history of pattern matching algorithms. [30]

2.3.2. Brute Force Algorithm
The Brute Force algorithm [31] is the most basic search algorithm. It checks the pattern at all

positions in the text between 0 and n-m, and shifts the pattern by exactly one position to the

right after each attempt. It has a fixed time complexity O(m x n).
21

2.3.3. Hash Algorithm

Hashing provides a simple method to avoid a large number of character comparisons.
Usually, a small change on the string will make a big difference to the hashing value. The
Karp-Rabin algorithm [31][32], is one of the most famous search algorithms based on
hashing. It calculates the hashing value of a pattern with length m and the text for every
continued m characters. If two hashing values are same, it will compare every character of

these two strings to confirm the match. It has a time complexity O(m x n).

2.3.4. Automata Algorithm

An automaton [30][31][33] is a mathematical model for a Finite State Machine. An
automaton can be represented by A = (Q, Z, I, F, D), which represents a finite state “Q” with
an initial state “I” and a final state “F”. Transitions between states can jump on the input of
alphabet “X” and empty input “€”. Then the transition function “D” can be defined by each

state qi € Q for each input o € (ZUg).

Generally, there are two types of automata: the Nondeterministic Finite Automaton (NFA)
and the Deterministic Finite Automaton (DFA). If a state q can jump to multiple different
states with only one input a, or empty input € exists in the transition, then this automaton is
NFA. The transition function D of NFA is denoted by the set of triples A. Otherwise, the
automaton is DFA, and the transition function D denoted by a partial function 6: Q X £ — Q
. In the area of pattern matching, it is easier to obtain the NFA of a string. However, maybe
there are multiple active states in an NFA and only one active state in a DFA. Therefore, DFA

can usually have a faster search speed for pattern matching and all NFA can be converted into

DFA. [29][33]

22

The Forward/Backward Dawg Matching Algorithm (FDM/BDM) [31] is a famous typical
DFA based algorithm. It tries to compute the longest factor of the pattern ending at each

position in the text. However, its complex process slows down its overall speed.

2.3.5. Sliding Window Algorithm
The Sliding Window algorithm [29] uses a virtual window with a length m on the test to

perform matching. There are two general ways to attempt the matching: (1) based on the

prefix; (2) based on the suffix.

Knuth-Morris-Pratt (KMP) [31][34] and Boyer-Moore (BM) [29][31][35] are the most
famous search algorithms. Many other algorithms have evolved from them. The primary

difference is that KMP is a prefix based approach, and BM is a suffix based approach.

< Uu—P

Text:T|O j | v |j+i| n-1
Pattern: P 0 |"'3|%"2|"'7| i | m-1 |
Pattern: P (shift 1) [0 EEE m-1 |
Pattern: P (shift 2) |0 |i'3|/'2|i'1| i | m-1 |
Pattern: P (shift d) o [md] el i] m-1]
Pattern: P (shift /) 0] L-1] i] m-1 |
Patiern: P (shifti+1) < & ><v-> [0] i m-1|

Figure 14: Shift in the Prefix Algorithm (Knuth-Morris-Pratt).
The Prefix algorithm follows a tight analysis of the Brute Force algorithm. It tries to find the
length of the longest prefix of the pattern that is also a suffix of the text. Figure 14 shows it
searching for a pattern p in the text T. When a window is positioned on the text T[j ... j+m-1],
assume that the first mismatch occurs between T[j+1] and p[i]. Let T[j ... j*i-1] =p[0 ... i-1] =
u, then the next characters T[j+i] # p[i]. When shifting, the Brute Force algorithm will only
shift one character, but we can expect if d characters have been shifted, a prefix v =p[O0 ... i-d-

1] of the pattern may match some suffix of the portion u. For example, if only one character

23

has been shifted, T[j+i] # p[i-1] or T[j+i] = p[i-1] but T[j+i-1] # p[i-2], it is impossible for the
pattern p to match the text T[j+1 ... j+i]. Therefore, if we can know it at the beginning, it is not
necessary to waste time shifting only one character. Only if p[0 ... i-d-1] = T[j+d ... j+i-1], is it
possible to have p[0 ... m-1] = T[j+d ... j+d+m-1]. If no such border exists the length of the
pattern characters can be shifted directly. Different prefix algorithms use different ways to
find the best d. The best algorithm can use the easiest algorithm to find the biggest d. For
example, KMP uses p[i] to calculate d. The pre-process session has time complexity O(m),
and the worst case of the search phase has time complexity O(m+n). In addition, different
algorithms may also have a different matching order of T[j ... j+i-1] and p[O ... i-1]. For
example, a general algorithm, such as KMP, will match in the order from left to right. The
Apostolico-Crochemore algorithm matches the second character (T[j+1] with p[1]) first, and

the first character (T[j] with p[0]) last. [29][31][34]

The suffix search algorithm scans the characters of the pattern from right to left and begins
with the rightmost character. Similarly to the prefix algorithm, it ignores some unnecessary
matches, and tries to find the biggest shifts. BM is a typical suffix based algorithm. Because it
is difficult to calculate the biggest safety shift directly, BM defines three ways to shift the
pattern (Figure 15), and any of them can shift the pattern without missing any occurrence.
Firstly, if T[j+i+1 ...j+m-1] = p[i+1l..m-1] = u and T[j+1] # p[i], it tries to find a shift d1,
which can have another u in p[0...m-d1-1] from p[0]. Secondly, when the suffix u does not
appear in any other position of pattern p, but a suffix v of u exists which is the same as the
prefix of the pattern, BM will look for a shift d2, which has the longest prefix v of pattern p
that is also a suffix of u. Thirdly, with a shift d3, if p[i-d3] = T[j+i] and if there is not any
character equal to T[j+i] in the range p[i-d3+1...m-1], we can directly perform this shift

safely. If there is not T[j+1] in the pattern, we can directly shift the pattern by i+1. All three

24

shifts are calculated in the pre- pre-process session and the results are stored in different

tables, and then the longest shift will be used in the search process. [29][31][35]

I e— —
Text: T |0 |j |j+i it j+m-1 n-1
<«—VvV—p
Pattern: P [o Tra] Tirt]i]wr T m2[mi]
Pattern: P (shitt1) [0 [ia] [i1] i [t [me[m1]
Pattern: P (shift d;) |0 |i—d1 idp+t | m-d1-1| m—2| m-1|
Pattern: P (shift dy) of ma| [ir1]i] [jem]mi]
«v—>
Pattern: P (shift d) [0 [ids]ior] e j+m]m-1
< NO T[+] = Pli-d—»>
Pattern: P (shift i+17) o o] Tirt]iJwr | m2[m
<« NOTM »

Figure 15: Shift in the Suffix Algorithm (Boyer-Moore).
Although the first two methods may have a longer shift sometimes, they require much more
time on the calculation in the pre- pre-process session. Some algorithms are designed to
simplify or modify the BM algorithm, such as the Turbo-BM, the Apostolico-Giancarlo
algorithm, the BM-Horspool, the Quick Search algorithm, the Tuned BM, Zhu-Takaoka
algorithm, the Berry-Ravindran algorithm, the Smith algorithm and the Raita algorithm. BM-
Horspool (Horspool) [29][31][36] is the most famous one. It only reserves the third shift
method of BM owing to its having a good balancing on the shift length and its complexity of
calculation. Therefore, it is faster in most cases. Until now, Horspool is still acknowledged as
the fastest single pattern matching algorithm in general cases in the world. Currently, Snort

uses BM as the default matching algorithm, and supports Horspool through plug-in.

In addition, the Backward Oracle Matching algorithm (BOM) [29][31][37] imports the
automaton technique into the suffix window shift algorithm. It creates a simple DFA with
m+1 states and m to 2m-1 transition in the pre- pre-process session. Figure 16 shows an
example of the DFA build by BOM. The search engine is similar to BM. The search will be

carried out backwards in each window following the DFA. When a mismatch (a non-existent

25

state in the DFA) has been detected, the window will be shifted to the next character of the
mismatch, which is shown in Figure 17. Because BOM has a simpler DFA, the search speed
is faster than FDM/BDM. It has a competitive speed for a large pattern length. However, the

speed is still slower than the Horspool and Bit Parallel algorithms for a small size of pattern.

©

0%’9'“@@@

Figure 16: A DFA built by BOM for Pattern “announce”. [10]

|€——Window——p|

Tt [T T T T Tl TTTTTTTTTITTITTITTITITT]

Mismatch €———

Search

iNO | ——Window—p|

Shift
Window L L T T T T T T T T TN T [[TTTTTTTTTTTT]

New Search

Figure 17: Shift of the search window after the failure of the search by BOM. [11]

2.3.6. Bit-Parallelism Algorithm

All the above matching algorithms have evolved from the Brute Force algorithm, which
stores two characters (one from the pattern, and one from the test) into two variables, e.g.
unsigned char (8 bits), unsigned int (16 bits) and unsigned long (32 bits) in ANSI C. Actually,
the variables are stored as binary in the memory. For example, an English alphabet which is
encoding in ASCII only uses 7 bits. An “unsigned char” is defined as 8 bits in the memory.
Each unsigned char can be used to store an English character. Then the computer will
compare the two variables. If the processor is 32-bit, which can process data and memory
addresses with the width of registers at 32 bits, each unsigned char only uses the last 8 bits in

the processor bus, the remaining 24 bits of the bus are not going to be used. Then the two 8

26

bits unsigned chars can be processed simultaneously, and compared all in a single operation.

(Figure 18) However, it wastes 75% of the processor bus.

< 1 x Computer Word in a 32-bit machine >
Al P PP PP P[] [Jof1[o]ofofo]o]1]
a LI PP PP][Jolt1[7]ofofo]o]1]

Figure 18: Comparison of two ASCII characters in the memory.

The Bit-Parallelism algorithm [29-[31][38] is different. Its purpose is not to look for the
biggest window shift, but it tries to use the simplest and the fastest way to process all
comparisons by using a bitwise technique. It uses a bit to describe if a character with any
encoding format is in the position of a pattern. Therefore, it requires a size of alphabet o X m

(pattern length) table to describe a single pattern.

For example, the processing of searching pattern “announce” in the text “anannouncenue” in
a 16-bit computer is shown in Figure 19. Firstly, the pattern will be decoded into an “S” table
in the pre-process session; all the matched characters are marked by 1. By calling over each
character in the text from left to right using the value in S table, a continual match (“1” with
the yellow background) from the 3rd to 12th character of text can be found in Table R.
Actually, it is not necessary to keep the whole Table R. By keeping one variable, the next
result can be calculated by Ri+1=((Ri<<I) | 1) & Si+1 where i is the current position of the
text and RO=1(word length). Then check if the result of the m (the length of pattern) bit is 1.
Because the example uses one shift and one AND operation to do the matching, it is also
called the Shift-AND algorithm. Similarly, by identifying the matched characters by 0 and
unmatched characters by 1, the equation can be changed to Ri+1=(Ri<<1) | Si+1 where R0=0,
which is called the Shift-OR Algorithm. Shift-OR may be slightly faster in some processors
owing to the computation of Ri+1 having been reduced to two operations, shift and OR

(without OR and 1 at the end).

27

S l&—1 x Computer Word in a 16-bit machine—>|

a=0x61 |

[o]1]ojo[o]o]o]1]

c=0x63 |

[o]1]ofofofo]1]1]

e=0x65 |

[o]1]ofofof1]1]1]

n=0x6E |

[o7]o[7]o[1]o]0]

0=0x6F |

[o]1]ofofo]1]1]1]

u=0x75 |

[o]1]o]1[o]1]0]0]

ASCII Encode

>
S(a)
S(c)
S(e)
S(n)
S(o)
S(u)
S(*)

Pattern

|€&—1 x Computer Word in a 16-bit machine—>>|

|ojoojofo]o]o]]

[o]7]o]o[o]o]o]0]

[7]0fofofo]o]o]0]

[ofo]7[ofo[7]1]0]

[ofo]ofo[7]o]o]o]

|ojofof7]o]o]o]0]

[o]oofofo]o]o]0]

lelc[n|ufo]n]|n]a]

Call over each character in the text from left to right using the value in S table:

Text
a olofofo[ofo]o]1
n olo|7]o][o]1]1]0
a ojofo[o[o]ofo]7
n olo[71]o]o]7]7]0
n olo[1]ofof7]7]0
o ojolo[o[1]0]0]0
u ololo|1]/0]o0]0]0
n olo[1]o[o[7]1]0
c o|1/o|ofofofo]o
e 1/ofofo[ofo]o]o0
n ofo[71]ofo]7]7]0
u olofo[71][o]o]o]0
e 1]o0f[ofo]ofo]ofo
Pattern Mask i710(0(0(0(0|0|0
Shift above table, compensate with 1 at the end, without AND:
Text rThe last bit of the pattern
a ojo[o|o]o]o]o]7
n olo[1]o0]o0]1]1]0
a o/olofojofo]o]1
n olo|1{o0]of7]1]0
n o|lo|1]ofo|1|1]|0
o o|ofofo[7]ofo]o
u olo|o[71]o0]o]0]0
n olo[7]o0]o0]1]1]0
The last bit is set c o/1/of[olo]o]o]o
castblISSeh, gy e 1/o[o[olo]o]o]o
mark an occurrence. n olol1lolol71l7l0
u 0lofo/1]o|o]o0]|0
e 1(olojofofo|o]o

Figure 19: Searching pattern “announce” in the text “anannouncenue” in a 16-bit computer by the Bit-
Parallelism (Shift-AND) Algorithm. Characters are encoded in ASCI|I

However, there is a limitation on the Bit-Parallelism algorithm owing to the length of the

computer word. The total pattern m cannot be longer than the computer word. For example,

28

the maximum pattern length that can be processed is 32 characters by a 32-bit computer, and
64 characters by a 64-bit computer. Although a longer variable can be simulated by multiple
computer words, it cannot be processed simultaneously. Therefore, the simulation will slow
down the whole matching process. Hence, the Bit-Parallelism algorithm is good at a short
pattern with a small alphabet. With a large alphabet, the matching possibility will be low. A
Sliding Window Algorithm, such as Horspool, which requires less comparing, and has a

bigger window shift, will be faster.

If it is assumed that the pattern length is no longer than the computer word size, the time

complexity is O(m+ o) for the pre-processing, and O(n) for the searching.

In addition, the Bit-Parallelism algorithm can also be processed backwards. Backward
Nondeterministic Dawg Matching (BNDM) [29] uses a similar search approach with BDM,
but the factor is searched by bit-parallelism. Its pre- pre-process session is the same as with
the normal Bit-Parallelism algorithm (Shift-AND). However, it makes a window on the text
during the search. The length of the window is the pattern length m. The first window is from
the left of the text and it calls over the characters from right to left in each window. If it loses
all matches in a single try (R = 0), the window will shift by m. If it finds the first character of
the pattern (R=1 0(m-1)), the window will shift to the first character of the pattern. Therefore,
it can have some jumping during the search. However, the expense is in the more computing
operations in the search process (not just two operations: shift and OR). Hence, it is good at a

slightly bigger m compared with a normal Bit-Parallelism algorithm.

2.3.7. Multiple String Matching Algorithms

The multiple string matching is an extension of the single string matching algorithm. It is
designed to search multiple patterns simultaneously. Most techniques of multiple string

matching are based on single string matching algorithms. There are some famous algorithms:

29

the Aho-Corasick algorithm, the Commentz-Walter algorithm, the Set Horspool algorithm,
the Wu-Manber algorithm, the Set Backward Dawg Matching (SBDM) algorithm, the Set
Backward Oracle Matching (SBOM) algorithm, the Multiple Bit Parallelism (MBP)

algorithm and the multiple BNDM (MBNDM) algorithm. [29]

The Aho-Corasick algorithm [29][39] is an extension of the KMP algorithm. It uses an Aho-
Corasick (AC) automaton as the pattern which is built by the multiple patterns. An example

of an AC automaton is shown in Figure 20.

Figure 20: An AC automaton of pattern P = {announce, annual, annually}. Double-circled states are
terminal. [11]

The Commentz-Walter algorithm [29] is an extension of the BM algorithm, and it is the first
sub linear multistring matching algorithm. To avoid skipping any occurrence, the size of a
window is set to the minimum length of all sub patterns li,. An example is shown in Figure

21. The shift size of the window will be calculated in the same way as with the BM algorithm.

|€&—Window—»|
Tet [[[[[L[T fdal PP PP

Search 4

<

v Compare o
with {e, I, y}

>

aln{njofu|n|c|e
aln|njula]l
aln{njufal|l|l|y

l(_émin_>l

Figure 21: The Sub linear Multi-string Matching algorithm with example patterns P = {announce,
annual, annually}.

30

The Set Horspool algorithm [29] is similar to the BM-Horspool and is a simplification of the
Commentz-Walter algorithm. It uses the simplified shift calculation to get the window shift
which is exactly the same as the Horspool. In practice, although it has a faster speed than the
Commentz-Walter algorithm, its high probability of finding each character of the alphabet in
one of the patterns decreases the window shift. Then, the Wu-Manber algorithm is designed

to decrease the probability based on the Set Horspool algorithm.

Pattern 1. E E E E @ E E E Analysis without Hashing:

Biock. [an| [nn] [no][ou] un] [nc] [ce PR
Pattern 2: E @ E @ E m Shit: 6 5 4 3 2 1 0 Number
Block: [an] [rin] [ru] [wa [a1] [nn][no] [ou][un][nc][ce] 1

. - [nn][nu] 2
e Lalln[nlul o] L1 L]] o] s
Block: [an [[[wa] [al | 111y
IF the Hash(*) of all blocks are unique:

< Search Pattern

Shift: 6 5 4 3 2 1 0 Number
[Hash(no) || Hash(ou) || Hash(un) || Hash(nc) || Hash(ce)| 1
[Hash(nn) | [Hashinu) | 2

| Hash(ll) || Hash(ly)| 3

IF Hash(no)=Hash(ou); Hash(un)=Hash(nc); Hash(nn)=Hash(nu); Hash(ua)=Hash(al):

g
- Search Pattern
Shift: 6 5 4 3 2 1 0 Number
|_Fehiay |[Hashce)| 1
P 2

| Hash(ll) || Hash(ly)| 3

Figure 22: The pattern analysis of the Wu-Manber algorithm with example patterns P = {announce,
annual, annually} and the length of the block = 2.

In the usual algorithm, the smallest unit is the character. Wu-Manber [29][40] groups the
characters and the comparing units (not the shift unit) become a block of a few characters.
Then the matching probability will decrease to o(-B), where B is the length (the number of
characters) of the block. And the difficulty will increase to 6B different blocks, which means
requiring much more memory when B is big. To solve the memory problem, Wu-Manber

applies a hashing function on all possible blocks and different blocks are identified by their

31

hashing value. The search engine will only compare the hashing value of block and window.
The shift step is still calculated in the same way as with Set Horspool, which will try to find
the rightmost occurrence. The maximum shift size is Inin—B+1. Because the hashing value of
different blocks may be equal, when an occurrence is found (shift size is 0), the block of
original characters should be checked again. Then a new shift with only one step will apply
on the window on the text. An example is shown in Figure 22. Wu-Manber has a fast search
speed for a big alphabet (e.g. bigger than 10) with not very many multiple patterns (e.g. 100).

[29]

Figure 23: The automaton of SBOM for example patterns P = {announce, annual, annually}. The factor
oracle of the reverse set PImin = {announce, annual }. [11]

The Set Backward Oracle Matching (SBOM) algorithm [29][41] has the same search
algorithm as BOM, the only difference is the automaton. The automaton is constructed on a
set of strings like the Aho-Corasick, however, it creates an additional transition from each
state on the path to the original lead state instead of jumping to the next state. And the length
of the automaton does not have the full length of the patterns. It will only keep the prefixes
with length 1, of all multiple patterns. If there are r multiple patterns, the maximum state of
the automaton is rXlmin . An example of the SBOM automaton is shown in Figure 23.

During the searching, when an occurrence is found, the search engine will verify the entire

32

current pattern against the text, and shift the window by 1. SBOM is fast for a super large

number of patterns or a small alphabet. [29]

Bit Parallelism can handle parallel characters in a string. The Multiple Bit Parallelism (MBP)
algorithm [29] can be seen as adding more characters on the single pattern, and they can be
processed at the same time. The change is the pattern mask. In the single pattern, there is only
one “1” in the pattern mask to identify the length of the pattern; in the multiple pattern
algorithm, there are multiple patterns of “1” to identify the position of the last bit of each
pattern. However, it still inherits the pattern length weakness from the BM algorithm, and it
has been magnified. The total length of all patterns cannot exceed the size of the computer

word; otherwise the search time will have multiplied. A pattern store example is shown in

Figure 24.
I« 1 x Computer Word in a 32-bit machine |
Patterns [[[[[[T T T 111 Pattern 3 | Patten2 | Pattern 1 |
Patt
vak L L L [TTTTT T T [7[o]oJofoloJo[7]o[o]oJo o[7]o]0o[o]0o0] 0]

Figure 24: Three patterns in a 32-bit computer for the MBP Algorithm.

The Multiple BNDM (MBNDM) algorithm [29] will resize all patterns to lnin, and put all
patterns in reverse order. This is similar to the SBOM, if the text matches a prefix. The entire
string will be verified against the text. The limited size of the computer word can store few

more patterns. A pattern store example is shown in Figure 25.

| 1 x Computer Word in a 32-bit machine »|
Patterns | | | | | | | | | | | | | | | Pattern 3 R (bn) | Pattern 2 Rv (bn) | Pattern 1 Rv (bu.) |
Patt
vack L L [T TTTTT T[T [ofo[7]ofoJo[o]o[7 oo o]e[o 7o o 0 0]0]

Mask

Figure 25: Three patterns in a 32-bit computer for the MBNDM Algorithm.

33

2.3.8. Snort String Matching Algorithms

Snort officially uses Aho-Corasick (AC) for multiple pattern matching. Furthermore, some
new algorithms have been designed based on the traditional string matching algorithms

mentioned in the previous sections.

Yaron Weinsberg from the Hebrew University of Jerusalem designed a novel multiple pattern
matching algorithm called “Ternary Content Addressable Memory” (TCAM). It requires a

special memory chip called TCAM which can store three values: “one”, “zero”, and “don’t

care”. Then it uses an algorithm similar to Brute Force to perform the matching. [55]

Piti Piyachon implements some modified Aho-Corasick algorithms on network processors.
He gives three different schemes: Bit-level, Byte-level, and Bit-Byte-Level. [57] The Bit-
level AC represents each character by 8 bits, and each bit will be an input of the
corresponding bit-level state machine. For example, if an input stream is “announce”, the bit 0
sequence of this stream is “10000000”, and its bit 1 sequence is “01100000”. There are in
total eight state machines corresponding to 8 bits of each character. A match is declared only
when all eight machines reach a common state. The byte-level AC declares multiple
characters as one single unit to build the state machine. Bit-Byte-level AC adds the previous

two options together, which use all bits of a string as one single unit.

2.4 Current IDS (Snort) parallelization

At this point, Snort is officially a sequential program. A fake parallelisation has been carried
out based on the network interface. With multiple network interfaces, multiple instances can

be created for each individual interface with a low overall performance.

Recently, much research has been carried out to parallelize the IDS, and most of it is based on

Snort owing to its GPL licence, and the well-designed modular structure.

34

As the pattern matching engine is the kernel of an IDS system, over 60% of the CPU work
load on average is spent on it.[9] Some people are trying to improve the performance of the
pattern matching engine, however, most of them are trying to move this part into a hardware
platform. For example, Jakub Botwicz has implemented the Karp-Rabin algorithm in
hardware architecture, which increases the overall throughput of Snort to about 2Gbps. [43]
Sarang Dharmapurikar and John W. Lockwood have designed a hardware-implementable
pattern matching algorithm for a content filtering application. The algorithm is based on a
memory efficient multi-hashing data structure, like a hardware implementation of Wu-

Manber. [45]

With a similar running frequency, a specified hardware implementation is usually executing
faster than a general-purpose processor. Therefore, a large number of researchers choose to
use a hardware implementation for IDS, especially the FPGA. There are quite a few different
approaches. Apart from the hardware implementation of a pattern matching engine
[43][45][58], a popular method is signature header classification, for example, “Ternary
Content Addressable (TCAM)”. [46][47][48] Another approach is implementing
reconfigurable pattern matchers and filters. [49] - [53] In addition, memory optimization and

hashing are other popular paths to achieve a low cost system. [54]

However, the hardware implementation still has many disadvantages. The main disadvantage
is the difficulty of re-programming and some people consider a compromise solution, which
uses a hybrid system instead of the pure software or hardware system. Some frequently
updated parts are put in the software system and the rest in the hardware system. For example,

Young H. Cho and William H. Mangione-Smith used a hybrid Snort in 2005. [67]

There is only a small amount of research for IDS on a general multi-core platform. Zhuojun

Zhuang and his group from Shanghai Jiao Tong University introduced an abstract NIDS

35

model and a related resource scheduling approach, which is shown in Figure 26. It added a
packet scheduler into the original snort module, and the scheduler model is protocol-oriented,
which classifies packets into a different processing sensor by protocol type. A traffic auditor

tracks the speeds of all flows by scheduler. [56]

i Al
Traffic Buffer for protocol #1 H Sensor for protocol #1 }—eﬁt
Auditor |
A
Nelti‘:lfrk Buffer for protocol #2 H Sensor for protocol #2 }—»ert
Network) Frame o scheduler . TTtee o mmemes
Monitor Decoder

\ Buffer for protocol #n H Sensor for protocol #n Alert

Figure 26: The architecture of the NIDS model by Zhuojun Zhuang.[56]

Splitting the traffic load into different detection sensors within the network is the primary idea
to parallelize Snort. M. Shoaib Alam also designed an adaptive load balancing architecture,
which uses some policies enforced on the splitter by a management console to adjust the
splitting policies for keeping the load disparity among the sensors reduced. [42] The policy
tries to minimize the packet duplication rate during the system operation, which can minimize

the percentage of the duplicated traffic. A packet flow structure is shown in Figure 27.

Traffic
Splitter
r

\
A

Policy Manager

Figure 27: Adaptive Load Balancing Architecture of Snort by M. Shoaib Alam. [42]

Similarly, some research has been carried out to parallelize the inspection work load on
different machines or sensors with one single network, which will distribute the candidate
packets to a different machine. It usually needs a traffic classification in the centre machine

to manage the jobs and a load balancing algorithm for the balancer to organise the work load.

36

Meharouech Sourour from Tunisia drew a structure to provide a high availability mechanism
which is shown in Figure 28. It includes a classifier, a few balancers, some sensors for
intrusion detection, a manager for output, and a database for alert records, logs and configured

parameters. [59]

Outside

| Inside

Traffic Classification

ﬁ |]

Balancer Balancer | oo..... Balancer

Switch @
|
/DS || IDS || IDS | | IDS || IDS || IDS | |1DS || DS || IDS |

Manager
| | | | | | [|

Figure 28: A Stateful Real Time Intrusion Detection System by M. Meharouech Sourour. [59]
Snort is a typical misuse detection which identifies evidence of malicious behaviour by
matching it against predefined descriptions of attacks, or signatures. Compared with anomaly
detection, which defines normal behaviour and attempts to identify any unacceptable
deviation as possibly the result of an attack, misuse detection has a lower false alarm rate and
a high miss detection rate. Some research has been carried out to reduce its miss detection
rate. The main idea of this research is adding some anomaly detection features into Snort. For
example, Lih-Chyau Wuu [44] from Taiwan gave Snort the ability to catch new patterns
automatically and detect sequential attack behaviours by introducing an “Intrusion Pattern
Discovery Module”. This module can find single intrusion patterns and sequential intrusion
patterns from a collection of attack packets in off-line training phases. It includes some data
mining skills and concludes some new signatures from large stories of packets and then

converts them into Snort detection rules for the following on-line detection.

37

2.5 Summary

As a popular open source NIDS/NIPS solution, Snort is widely used by many researchers in
their parallelization of deep packets inspection and intrusion detection. However, as many
researchers choose to use FPGA as the development platform, a small amount of research has
been carried out based on an optimized network processor. At this point, although Snort
officially works on a general CPU, almost no research has been carried out on the topic of

Snort parallelization on a multi-core/ multi-processor computer.

38

I1. Current System Analysis

3 Snort Code Analysis
3.1 Snort Overall Structure

Besides the external packet capture module (Libpcap in Linux and Winpacp in Windows),
Snort includes four primary processing modules: packet decoder, preprocessor, detection

engine and output module which are shown in Figure 29.

SNORT Detection
(plug-ins)
A
Libpcap | Packet .| Preprocessor Detection Output
Library " Decoder "I (plug-ins) Engine (plug-ins)
\ A

Figure 29: The Snort primary processing module. [10]
Derek L. Schuff evaluated a percentage workload on each primary module in the flow of
packet processing, which is shown in Figure 30.[9] It shows the decoder and outputs only

need a very small CPU resource; the detection engine requires about an 80% CPU resource.

‘ Detection Engine ‘

Read Decode » Preprocessors Rule tree lookup, N Non-content rules,
Packet P Pattern matching RegExp matching

Non-content 15%
RegExp 15%

Notificaiton

1%

2% 13% 46%

Figure 30: The Snort packet processing loop with the percentage of time spent in each phase. [9]

39

snort-2.8.5
—detection—plugins

I~ sSPC

[sSkrC

snortsp-3.0.0b3

——analysis

—a

—a

ynamic—plugins
—sf_engine
xamples

—sf_preproc_example
ynamic—preprocessors
——dcerpc
——dcerpc2

includes
—dns
——ftptelnet
——1ihs
——sf_dynamic_initialize
——smtp
—ssh

—ssl

—output—plugins

—parser
—preprocessors

—Httplnspect
——anomaly_detection
—client
—event_output
—inc lude
—mode_inspection
—mnormalization
——server
——session_inspection
—user_interface
—utils

W

—Streamb

—sfutil
——target—based

in32
—WIN32-Code
—WIN32-Includes
—1libnet
—mysgl
—NET
—NET INET
—rpc
—WinPCAP
—WIN32-Libraries
libnet
ysgl

Now, version 2.8 is the latest stable version of Snort; and version 3.0 is the next generation of
the Snort Security Platform, which contains the version 2.8 as its traffic analysis module, and
some extra features to control the data flow. A code structure comparison of these two

versions is shown in Figure 31. The version 2.8 Snort is located in the ““/src/analysis/snort/”

—UIN32-Prj

unmny
lua

nort
——common
——detection—plugins
——dynamic-plugins
f_engine

xamples

——dynamic—-preprocessors
——dcerpc
—dns
——ftptelnet
——1ibs
——smtp
—ssh
—ssl
—output-plugins
—packet
—parser
—preprocessors
—Httplnspect

—client
—event_output
——inc lude

—mnormalization
——server

—user_interface

—utils

—Streamb

—sfutil

——target—based
L—attribute_table

[comms
L—tool
—data_source

—daqg
——decode
—Ff low
—output
—sysloyg
—text
—unif ied2
—platform
—s_util

inc lude

libshpf

—unit_tests

—in32
L—yIN32-Prj

Figure 31: The code structure of Snort for version 2.8 and 3.0beta.

40

——anomaly_detection

—mode_inspection

——session_inspection

folder of version 3.0 Snort Security Platform without much difference. This thesis will focus

on version 2.8.

In version 2.8, most primary modules are in the “src¢” folder, such as “snort” - the main
program entry, “decode” - decoder, “detect” — preprocessor and detect control, “fpdetect” —
dynamic detection engine, “event” — output and so on. The folder “dynamic-plugins” contains
all common functions of dynamic plugins for both preprocessor and detection and the folder
“detection-plugins” contains all detection plugins. The folders “preprocessors” and “dynamic-
preprocessors” contain both static and dynamic preprocessor plugins. All plugins are designed
by different authors. The other folders contain different utilities. The real detection engines
(different string matching engines) are in the “sfutil” folder. “snort.c” and “detect.c” are the

two files containing all primary functions of Snort.

3.2 Snort Variables

There are two important global variables in Snort: “Packet” in “decode.h” and “SnortConfig”
in “snort.h”. “Packet” is the most important as it contains all the packet information for a
single packet. There are three main types of information: (1) a pointer points to an address in
the originally captured packet in the memory. The packet payload data will be used for the
final detection. However, there will be some issues in the multiple processes program,
because the pointed address in different processes points to different data, the same packet
passing from one process to another does not pass the correct data by default. (2) The decoded
information from the original packet, especially from the header, for example, the source and
destination IP address, protocol and port number. (3) Some flags will be used for future
packet detection, such as “preprocessor_bits” which identify which preprocessor will be used

for the packet.

41

Typedef struct _Packet
{
const struct pcap_pkthdr *pkth; /* BPF data */
const uint8_t *pkt; /* base pointer to the raw packet data */
const EtherHdr *eh; /* standard TCP/IP/Ethernet/ARP headers */
const VlanTagHdr *vh; /*802.1q vlan header */
const uint8_t *data; /* packet payload pointer */
const uint8 t *ip_data; /* 1P payload pointer */
IP4Hdr inner_ip4h; /*IP Header information, inc. IP Address) */
IP6Hdr inner_ip6h; /*IP Header information, inc. IP Address) */
IP4Hdr outer_ip4h; /*IP Header information, inc. IP Address) */
IP6Hdr outer_ip6h; /* IP Header information, inc. [P Address) */
uintl6é _t sp; /* source port (TCP/UDP) */
uintl6é_t dp; /* dest port (TCP/UDP) */
uint32_t preprocessor_bits; /* flags for preprocessors to check */
uint32_t caplen; /* captured packet length*/
uint32_t http_pipeline_count; /* Counter for HTTP pipelined requests */
uint32_t packet_flags; /* special flags for the packet */
uint32_t proto bits; /* protocol number */
uintl6é_t dsize; /* packet payload size */
uintl6é_t ip_dsize; /* IP payload size */
uintlé_t frag offset; /* fragment offset number */
uintl6é_t ip_frag len; /* fragment length */
uint8_t frag_flag; /* flag to indicate a fragmented packet */
uint8_t uri_count; /* number of URISs in this packet */
uint8_t csum_flags; /* checksum flags */
uintl6_t configPolicyld; /* configPolicyld in SnortConfig */
}Packet

Figure 32: The “struct” of a Packet in Snort.

“SnortConfig” contains almost all Snort configurations and running information. It includes
some flags such as “run flags” which record the Snort running mode; some general
information from the configuration file, such as the home network, and its network mask; and
the pointers point to the configured plugins and rules. These variables request the memory by

different functions through “malloc”, and are distributed in random locations of the memory.

“DynamicLibInfo *dyn engines” points to a list of dynamic detection engines, it is located in
“/src/dynamic-plugins/sf dynamic_engine.c” in the source folder, and in
“/usr/local/lib/snort_dynamicengine/libsf engine.so” in a installed Snort system in Linux;
“DynamicLibInfo *dyn rules” points to dynamic detection libraries, it is located in

“/src/dynamic-plugins/sf engine/sf snort plugin api.c” in the source folder, and in the

42

“/ust/local/lib/snort_dynamicrule/” directory in an installed Snort system in Linux;
“DynamicLibInfo *dyn_preprocs” points to dynamic preprocessors, it is located in the
“/src/dynamic-preprocessors/” folder in the source folder, and in the
“/usr/local/lib/snort_dynamicpreprocessor/” directory in a installed Snort system in Linux. All
of them can be initialled in two ways: (1) by the function “ParseCmdLine” in “snort.c” if the
configuration is set in command line mode; (2) by the function “ParseSnortConf” in “snort.c”,
if the configuration is loaded from the configuration file (normally ‘“snort.conf” in /etc/

folder). All the three variables are loaded by function “LoadDynamicPlugins” in “snort.c”.

“OutputConfig *output configs” points to the list of output plugins. “OutputConfig
*rule type output configs” defines the rule types which will log to the output modules, such

29 ¢

as “tcpdump”, “syslog” and “mysql”

“RuleState *rule state list” points to a list of rule states. The rule is identified by gid and uid.
In the rule state, it records if a rule has been enabled or disabled; and the action of the rule is

either "alert", "drop", "sdrop", "log" or others. The rule state will be imported during the Snort

initialization from the configuration files.

“ClassType *classifications” define the predefined classification list of Snort rules. The
location of the classification file is defined in the “/etc/snort.conf” file, which usually uses
“/etc/classification.config”. This classification list includes a classification name, a short
description, and the priority of this type of rule. All Snort rules define its classification group
by “classtype”. Snort imports this classification list in the function “ParseConfig()” by
function “ConfigClassification()”, which is a part of “static const ConfigFunc config_opts[]”.
The rule classification will be used in function “ParseRuleOptions” to group the Snort rules.
The Snort rules will be parsed in the function “ParseConfigFile()” which is at the Snort

initialization or after Snort rules change.

43

Typedef struct _SnortConfig

{ int run_flags;
uint32_t homenet; /* record home network from configuration */
uint32_t netmask; /* record home network mask */
uint8_t ignore_ ports[UINT16_ MAX]; /* config ignore ports */
int pcre_match_limit; /* config pcre_match_limit */
char *dynamic_rules_path; /* --dump-dynamic-rules */
DynamicLibInfo *dyn_engines; /* point to dynamic detection engine */
DynamicLibInfo *dyn_rules; /* point to dynamic detection rules */
DynamicLibInfo *dyn_preprocs; /* pointto dynamic preprocessors */
OutputConfig *output_configs; /* list of output plugins */
OutputConfig *rule_type output_configs; /* list of rule type output */

SFGHASH *config_table; /* table of config keywords and arguments */
RuleState *rule_state list; /* point to the list of rule state */
ClassType *classifications; /* the classification list of snort rules */

ReferenceSystemNode *references; /* the reference list */
SFGHASH *so_rule_otn_map;

SFGHASH *otn_map;

FastPatternConfig *fast_pattern_config;
EventQueueConfig *event _queue_config;
PreprocPostConfigFuncNode *preproc_post_config_funcs;
PreprocCheckConfigFuncNode *preproc_config_check funcs;
ThresholdConfig *threshold_config;

RateFilterConfig *rate_filter_config;
DetectionFilterConfig *detection_filter_config;
SF_EVENTQ *event_queue;

SF_LIST **ip_proto_only_lists;

uint8_t ip_proto_array[NUM_IP_PROTOS];

int num_rule_types;

RuleListNode *rule_lists;

ListHead Alert; /* Alert Block Header */
ListHead Log; /* Log Block Header */
ListHead Pass; /* Pass Block Header */
ListHead Activation; /* Activation Block Header */
ListHead Dynamic; /* Dynamic Block Header */

ListHead Drop;

PluginSignalFuncNode *plugin_post _config_funcs;
OTNX_MATCH_DATA *omd;

rule_port_tables t *port_tables;

PORT_RULE_MAP *prmlIpRTNX;

PORT_RULE_MAP *prmTcpRTNX;

PORT_RULE_MAP *prmUdpRTNX;

PORT_RULE_MAP *prmlcmpRTNX;

srmm_table_t *srmmTable; /* srvc rule map master table */
srmm_table_t *spgmmTable; /* srvc port _group map master table */
sopg_table_t *sopgTable; /* service-oridnal to port group table */

SFXHASH *detection_option_hash_table;
SFXHASH *detection_option_tree_hash_table;
tStPolicyConfig *policy_config;
SnortPolicy **targeted policies;
unsigned int num_policies_allocated;

} SnortConfig

Figure 33: The struct of SnortConfig in Snort.

Similarly to the classifications, “ReferenceSystemNode *references” records the reference list

from ““/etc/reference.config”.

44

IDS and intruders are competitors. When the IDS studies and analyses the intruders’
technique and to get a new signature, the intruders are also studying the signatures of the IDS
to avoid their detection. SO rules are designed to reduce the possibility, they are a kind of pre-
compiled rule, and cannot be learned directly without a reverse engineering by intruders.
“so_rule otn map” is used to store SO rules. And “otn_map” is used to store the normal

rules.

3.3 Snort Initialisation

In Snort, function “Main()” in “snort.c” is the entry of the program. It will check if Snort is
running as a server in the Windows system. If so, it will pass the process to
“SnortServiceMain()” in “snort.c”, then call “SnortServiceStart()” in “win32_service.c” to
perform a group of special initialization for the Windows system, and return to “SnortMain()”
in “snort.c”’; otherwise, it will return to “SnortMain()” directly. “SnortMain()” will proceed
with a large amount of initialization jobs before the packet processing loop. Figure 34 shows

a flowchart of the entry process of Snort.

Main() in “snort.c”

If running as a
ervice in Windows?

SnortServiceMain() in
“win32_service.c”

I

SnortServiceStart()

in “win32_service.c”
SnortMain() in

“snort.c”

v

Initialization
InitSignals();
Snortlnit();
SnortPostlnit();

v

Packet
Inspection
Loop

Figure 34: The entry process of Snort.

45

In function “SnortMain()”, Snort will initialise all signals; do a first stage initialisation in
“SnortInit()”; initialise PCAP and open the network interface if the packets are directly read
from an NIC; perform a post stage initialisation “SnortPostInit()* and finally bring the system
in to the working session “SnortProcess()”. Snort supports both transparent detection (NIDS)
and inline detection (NIPS) mode. Here, an extra thread will be created for inline fail-open

mode.

In function “Snortlnit()”, all configured parameters will be imported; the signature rule will
be parsed; and all enabled output plugins, pre-processors and detection plugins will be

registered and initialised.

In function “SnortPostlnit()”, the system will set up the mode of the network interface and

carry out some extra configuration of different plugins.

3.4 Snort Detection Process

Function “SnortProcess()” is the entry to the processing section. In the function, another
function “InterfaceThread()” is called to create a thread per interface. This interface is usually
an NIC interface for a single input file. Currently, Snort will officially create the multiple
threads for multiple interfaces, each interface will use a single thread, whether there are any

traffic data in that interface or the traffic is heavy.

Function “InterfaceThread()” will call PCAP to capture or read a single packet one by one in

a “while (1)” loop. A structure of the function is shown in Figure 35.

Snort uses “pcap_dispatch” or “pcap loop()” to get the packets and directly send them to a
call-back function “PcapProcessPacket()”. The working mechanism of LibPCAP will be

discussed in the following section.

46

SnortProcess () ;
pcap_dispatch(PcapProcessPacket);

PcapProcessPacket () ;

(xgrinder) (&p, pkthdr, pkt);

v

Preprocess (&p) ;

Packet
Reassembl

Figure 35: The structure of the process functions of Snort.

Function “PcapProcessPacket()”” contains the whole job of processing a single packet. It uses

a function pointer “grinder” to perform decoding corresponding to different types of packets.

When PCAP reads a packet, the read packet is stored in two different variables: “const struct
pcap pkthdr * pkthdr” and “const u_char * pkt”. “pkthdr” has the packet header, size and
time information; and the whole packet payload is stored in “pkt”. The decoded packet is
stored in a local variable “Packet * p”. However, the decoded information does not copy the
packet payload to the local, it only uses a pointer to point the location in the variable “pkt”.

Therefore, all the above three variables are necessary for the later processing.

The function “preprocess(&p)” will not only carry out the pre-processing job but firstly

(14

passes the decoded packet “p” through all pre-processors, and then performs detection once,

47

sending the output if there is any. After the first loop detection, some fragment packets will be
marked in the variable “p” to be reassembled by predefined reassembly functions. Then it
passes the reassembled packet through all pre-processors and performs the detection again.
After that, the newly detected packet will be checked for fragment until there is no fragment
in the packet. However, if the normal traffic only contains a very small number of fragment
packets, most packets do not need to be reassembled and detected more than once. There are

also a very small number of packets, which need to be reassembled a few times.

In the IDS mode, the packet “p”, its header “pkthdr”, and its payload “pkt” will be directly
dropped at the end of detection. In the inline (IPS) mode, the packet will be resent if nothing

has been detected.

3.5 Snort Signature Rules

As a misuse detection system, Snort uses signatures to identify attacks. When a packet passes
IDS, the detection engine will try to match all signature rules with the packet in order to
identify the intrusion action. If a new type of intrusion is not in the signature database, it will
not be found by the IDS. Basically, there are two types of rules that can be downloaded by the
Snort website: subscriber rules and community rules. Subscriber rules contain all the newest
rules from official releases, and are only available to the paid subscribers; community rules
are free to download and have fewer rules than subscriber rules. Currently, the community
rule set contains over 7000 rules in 55 groups. All signatures are stored in a group of “*.rules”
files in the “rules” folder. An example of a Snort rule is shown in Figure 36. In the example, it
defines a packet sent from any IP to any IP with defined HTTP servers, and TCP port number
(usually 80 or 443), if a keyword “LOCK” is found in the payload with the first 5 bytes, then
Snort will send an alert with a message “WEB-IIS WebDAV file lock attempt”. “Offset” is

another important keyword in the rule force Snort inspects the packet payload from a number

48

of bytes. In addition, the content defined in the Snort rule is case sensitive, case insensitivity

content will be defined by regular expression.

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS WebDAYV file lock attempt"; content:"LOCK "; depth:5;)

Figure 36: An example of a Snort rule.

RuleList

(1) Node Activation
(Action)

h 4

Pass

A 4
h 4

Alert

\ 4

Dynamic Log

ListHead
@ (Packet

Type)

RTN Rule Header
(3) RuleTreeNode Ly Right
(Rule Header) Down

Down Down NULL
OTN Rule Options :| Rule Options]

Rule Header J—V Rule Header | ~ —P Rule Header

Right Right Right

(4) OptTreeNode

(Rule Options) Next Next

Rule Options Rule Options 1«

Next Next

Rule Options |« Rule Options -

NULL NULL

Figure 37: The structure of theThree-Dimension Chain, 1 Classification Rule Tree.

In order to perform inspection, all rules need to be imported from the files into the memory
with a high performance structure. Snort uses a “three-dimension chain” to organise the rules
in the memory. This concept classifies the rules by action, packet type and packet header into
a rule tree. Figure 37 shows the structure of the rule tree. On the top (list) level, Snort has five
different actions: activation, dynamic, alert, pass and log. On the second (packet type) level,

Snort only supports four types of packets: IP, TCP, UDP and ICMP. Snort defines “Rule Tree

49

Node (RTN)” and “Option Tree Node (OTN)” relating to the header and options of rules

(Figure 38) owing to the fact that many rules have exactly the same header.

alert tcp any any -> $SHTTP_SERVERS $HTTP_PORTS|(msg:"WEB-IIS WebDAV file lock attempt"; content:"LOCK "; depth:5;)
<«——Rule Header (RTN) > | < Rule Options (OTN) >

Figure 38: The division of an example rule in RTN and OTN.

prmIpRTNX ———»
prmTcpRTNX — ——»
@ PORT_RULE_MAP prmUdpRTNX —— —»
(Type) prmlcmpRTNX]
prmSrcPort[] ———»
PORT_GROUP prmDstPort[] — ——»
(Source/Destination prmGeneric] |
Port)
4
NoContent: pgHeadNC, pgTailNC, pgCurNC — — —»
UriContent: pgUriHead, pgUriTail, pgUriCur — — —»
RULE_NODE P9 'pg P9
@ (Content) Content: pgHead, pgTail, pgCur —|
v
mNext » mNext —» mNext —— — »
@ OTIB(mRuleData mRuleData mRuleData
Poi
oint to—* 1 1 1
RTN & OTN OTN *otn OTN *otn OTN *otn
In the first
Classification RTN *rtn RTN *rtn RTN *rtn

Figure 39: The structure of the Fast Packet Detection Chain, 2™ Classification Rule Tree. [14]

Function CreateDefaultRules() is used to create the top level RuleListNode by calling
function CreateRuleType() five times to create “Activation”, “Dynamic”, “Alert”, “Pass” and
“Log” RuleListNode. ListHead is defined in CreateRuleType(). Then Snort uses function
ParseRulesFile() to analyze and read the rule file line by line, and pass the reading to function
ParseRule(), which will parse each reading rule and search for lines that are not detection
rules. If a rule is a detection rule, it will verify it and write it into memory by using function
ProcessHeadNode(). ProcessHeadNode() fills RTN, and then calls function

ParseRuleOptions() to create OTNs.[60]

50

Owing to the large number of rules, Snort uses a secondary rule classification to reduce the
number of rules in a single class. In the classification, each ListHead is classified again
according to the source/destination port (RTN) and its content (OTN). Four new groups are
added between the second level (ListHead) and the third level (RTN) in the first classification
rule tree: PORT RULE MAP (a modified structure of packet type), PORT GROUP (stores
the source and destination port), RULE NODE (includes three different contents: content uri-
content and no-content) and OTNX (points to the address of RTN and OTN which is defined
in the first classification). A structure is shown in Figure 41. This chain is used by the “Fast

Packet Detection” engine, which can greatly speed up the detection performance.

Fast Packet Detection is initialized through function fpCreateFastPacketDetection() in
" /fpcreate.c" which will go through all rules in the first classification rule tree using RuleLists
(a RuleListNode pointer). Each rule is classified according to its content (Content, UriContent
or NoContent). Content is determined through the OTN associated with the rule. Then
function prmAddRuleXX() (prmAddRule(), prmAddRuleUri() or prmAddRuleNC()) is used
to determine if the rule is bidirectional and sorts rules in tables according to source and
destination port. There are three groups of PORT GROUP: one is the source port table
(prmSrcPort), another is the destination port table (prmDstPort) and the last is the generic
table (prmGeneric) which is used for rules with “srcport = any” and “dstport = any”.
However, a packet may be in both prmDstPort and prmGeneric groups. Therefore, function
prmCompileGroups() is used to link the prmGeneric to the prmDstPort for that port. For
example, a rule belongs to the “TCP prmDstPort 21 and prmGeneric; the detection engine
will go through the prmGeneric group first, and then go through the “prmDstPort 21 group.

[60]

51

3.6 Snort Plugins

Plug-in is an important concept of Snort. At this point, there are three types of plugins in
Snort: output plugins (in the “output-plugins” folder), pre-processors (in the “preprocessors”

folder), and detection plugins (in the “detection-plugins” folder).

Output plugins include some kind of passive log systems and such plugins including
“LogTcpdump” plugin can output the log in the TCPDump format; “AlertSyslog” plugin can
send an alert to a syslog server; “Database” plugin can output an alert to TransSQL database,
such as MySQL and MS SQL.; “AlertFast” plugin can simplify the output alert; “AlertFull”
plugin can generate a detail alert; “AlertCSV” plugin can output an alert in a standard CVS

format, and so on.

Detection plugins do not only include the pattern matching engines, but also include some

special string operations such as the length for size detection of a string.

The pre-processor is a very important part of packet detection. Without pre-processors, the
simple pattern matching module finds it hard to find all matching from unformatted packets.
Snort consists of some general pre-processors, such as “Frag2” for packets
defragment/reassembly, “Stream4” for session reorganization, and some special purposes pre-
processors, such as “HttpInspect” for decoding and formatting http URL, “ARPspoof” for
ARP spoof recognition, “Bo” for BO backdoor recognition, “TelNeg” for telnet session

formatting, and so on.

The work of a plug-in includes three steps: register, initialization and action. Therefore, each
plug-in has three functions: the register function (RegA, RegB, ...), the initialization function
(InitA, InitB, ...) and the action function (ActionA, ActionB, ...). The register will initialize

all plug-ins which are supported by Snort and make a plug-in initialization chain which will

52

encapsulate all plug-ins’ initialization functions (Figure 40). Then initialization will read the
configuration file “snort.conf”, and get the plug-in which has been enabled by the user. By
using the plug-in initialization chain, it builds a new plug-in action chain which includes all
enabled plug-ins (Figure 41). Finally, the action executes the action functions one by one

following the plug-in action chain.

InitA InitB InitC » InitD InitXX
Figure 40: plug-in initialization chain created by register.
InitA InitB InitC InitD InitXX
¥ ¥
Enable Enable
Snort.conf ‘ |
A 4

ActionB — ActionD

Figure 41: Plug-in action chain created by initialization from the plug-in initialization chain.
In the detection process, when Snort needs to call these enabled plugins, it only calls the first
plugin in the chain, and goes through all the others like an automaton. There is one stop in the

middle of the plugins.

3.7 Packet defragment “frag2”

The network hardware has a maximum transmission unit (MTU). It is the largest protocol
data unit in bytes that can be passed on through the data link layer of a hardware interface.
The value is usually defined in the hardware, and cannot be modified by the operation system.
In the Ethernet 802.3, the MTU is 1492; the Ethernet v2, which is almost always used by all
network devices, has a MTU of 1500; and some modern network devices now support
“Jumbo Frames” which have a MTU up to 9000. The maximum size of an IP packet is
OxFFFF (65536 bytes). When a packet bigger than the MTU is sent by OS, the hardware will

automatically fracture the big packet into multiple fragment packets. Each fragment packet

53

will have its own IP header. Therefore, attackers can construct some special fragment packets
to avoid detection. An example of these special fragment packets is when the whole of the

attacking codes are divided and distributed in different fragment packets.

Snort will use the preprocessor“frag?” to defrag all fragment packets to the original IP
packets, and then pass the original packet into the detection engine for final inspection. As
Snort processes per packet, and “frag2” is needed to handle multiple packets, it changes the

original Snort packet processing structure to become a compulsory plugin.

When a number of continuing packets come into Snort, they may belong to a single IP packet;
but they may also belong to multiple different packets. Therefore, the system requires an
array of at least two dimensions to store these packets. Snort uses two levels of binary trees to
store packet information. The primary binary tree keeps the packet information, such as IP,
protocol, fragment flags, fragment bytes, original packets size, fragment packet numbers, and
so on. Each node (struct ubi_btNode Node) in the primary binary tree will point to a struct
“FragTracker”. “FragTracker” contains the nodes (struct ubi_btRoot fraglist) and the point
(struct ubi_trRootPtr fraglistPtr) of the secondary binary tree. Each node of the secondary
binary tree will point to a “Frag2Frag” struct, which contains the data, size and offsets of a

fragment packet.

For a new incoming packet, “frag2” will compare its features to see if they belong to the
features of the primary binary tree. If yes, it should be a new fragment packet of this node,
and adds it to the secondary binary tree. If not, it adds it as a new node. A defragmenter flow

chart is shown in Figure 42.

54

f Fragment Packet?
PP_FRAG2

in the Primary binary tree?
GetFragTracker(p);

\ 4
Add it to the secondary Add a new in the primary
binary tree. binary tree.
InsertFrag(p, ft); NewFragTracker(p);

ragment packets in this IP packet-a
arrived?
raglsComplete(ft, &compdata);

Test Dos attack ‘
Rebuild IP packet
RebuildFrag(ft, p);
<

\ 4

Process over time node.
PruneFragCache();
< v

<

\ 4
End

Figure 42: The defragment process of Snort.

3.8 Detection Engine

Function “Detect(p)” is the entry of the Snort detection process, which is called the
“preprocessor(p)” function. In the “Detect(p)” function, it imports the rule list and calls the

real detection module “fpEvalPacket(p)”.

Function “fpEvalPacket(p)” is the interface of the detection engine and it will identify the
type of packet coming into the detection engine as TCP, UDP ICMP or IP. It then calls the

corresponding function “fpEvalHeaderXXX”, such as “fpEvalHeaderTCP”,

55

“fpEvalHeaderUDP”, “fpEvalHeaderICMP”, and “fpEvalHeaderIP”. All four functions are

very similar.

Typedef struct {
PORT_GROUP * PG; // point to the corresponding PORT_GROUP
Packet * p; // the candidate packet.
int check ports; // if need to check port number, if TCP or
UDP?
int iMatchInfo ArraySize; // the number of type, default is 5.
MATCH_INFO *matchlnfo; // All found Match, point to
OTNX(rules).
} OTNX_MATCH_DATA;

OTNX_MATCH_DATA *omd = snort_conf->omd; // declared in function
// fTpEvalPacket(Packet *p);

Typedef struct {
OTNX *MatchArray[MAX_EVENT_MATCH];
int iMatchCount;
int iMatchlndex;
int iMatchMaxLen;
} MATCH_INFO;

Figure 43: The struct of “OTNX_MATCH_DATA” in “InitMatchInfo” function.

TCP is the most common protocol in the network. In the function “fpEvalHeaderTCP”, it will
firstly call the “prmFindRuleGroupTcp” function to find the corresponding “PORT _GROUP”
under RTNX based on the port information of the packet. Then the function
“InitMatchInfo(&omd)” is used to prepare all related information of the “PORT_GROUP”,
and initialize struct “OTNX MATCH DATA omd” which is used to store all detection

results. The structure of “OTNX MATCH_DATA” is shown in Figure 43.

After the initialization, function “fpEvalHeaderSW” will be called to organise the later packet
matching. The “PORT_GROUP” includes three types of nodes: content, uri-content, and no-

content. A packet is required to carry out all three types of matching.

[13 9

“Content” is a general group of characters. “uri” stands for the “Universal Resource
Identifier” on the web and ““uri-content” is usually the address of a webpage or FTP route, e.g.
“http://www.snort.org/assets/166/snort_manual.pdf”’. A single packet may include more than

56

one URI. If any URI has been found by the pre-processor “http decode”, the packet will be
required to perform uri-content matching. Both content and uri-content matching will use the
multiple pattern search engine “mpseSearch()” to perform pattern matching. And
“mpseSearch()” will use one of the user defined pattern matching algorithms to perform
pattern matching, such as Basic Keyword Search Trie, Aho-Corasick DFA, Aho-Corasick
NDFA,or Aho-Corasick NFA. The type of pattern matching algorithm is saved in “p-
>method = SnortConfig sc->fast pattern_config->search method”. The Aho-Corasick pattern

matching algorithm is the default algorithm of Snort.

Table 2: Typical Snort Detection Plugins

RTN Detection Plugins (call by fpEvalRTN()):

Check Bidirectional | Check if the rule header has a bidirection character “<>”.

CheckSrcPortNotEq | Check if the source port of the packet does not equal the rules.

CheckDstPortNotEq | Check if the destination port of the packet does not equal the rules.

CheckSrcPortEqual Check if the source port of the packet equals the rules.

CheckDstPortEqual | Check if the destination port of the packet equals the rules.

CheckSrcIP Check the source IP.

CheckDstIP Check the destination IP.

OTN Detection Plugins (call by fpEvalOTN ()):

dsize The length of load.

Session Get the user data in the TCP session.
ICMP All ICMP attacks related detection tools
resp The dynamic responding detection tools

57

“No-content” matching includes all other matchings in the Snort rule keyword options. Snort
needs to run over all nodes in the “PORT_GROUP” one by one to perform the matching.
Functions “fpEvalOTN()” and “fpEvalRTN()” are used for no-content matching. They will
match the OTN and then the RTN by calling the corresponding detection plugins to perform

the matching jobs. Some typical plugins are listed in Table 2.

When a matching has been found, the detection engine will call function “FpAddMatch()” to
write the match into variable “OTNX MATCH DATA omd”. The actual data storage
location of “omd” is in the globe variable “snort conf->omd”. There is an array

“MatchArray” in the “omd” store all matching the OTNX pointer.

4 LibPCAP Mechanism Analysis

Snort uses LibPCAP in Linux and WinPCAP in Windows to capture packets in the network
or read packets from a saved pcap file. Libpcap is a hardware independent open source library
that provides a high level interface to a network packet capture system.[61] Some Snort
related features of LibPCAP will be analyzed in this session, and all analysis is based on

version 1.0.0.

When network packets are sent and received by a network card, the network driver in the
kernel space will grab/put from/to the protocol stack of the OS, and then the OS will pass the
packet to the application in the user space. The data flow is bidirectional. For a high
performance packet capture, half of LibPCAP is in the boundary of the kernel space, and
grabs both transmitted packets and received packets from the driver. The other half is in the

user space to process the packets. A structure is shown in Figure 44.

In general, the LibPCAP includes three parts: device initialization, BSD Packet Filter (BPF),

and packet processing loop. A packet process structure is shown in Figure 45.

58

|
3 LabPCAP
|
|
|
|
|
Transmitted Packets | _ Packet
i' Filter

Packets j«—»

Network
Card

Card

A

Driver

Hardware

Received Packets

Protocol
Stack

Kernel Space

Figure 44: The structure of packets capture. [62]

Initizlize Network Interface
“Pcap_lookup_dev()”
“Pcap_open_live()”

OR “Pcap_open_offline()”

\ 4

Set Filter
“Pcap_compile()”
“Pcap_setfilter()”

\ 4

PCAP LOOP
“Pcap_loop()”

OR “pcap_dispatch()”

OR “Pcap_next()”

OR “pcap_next_ex()”

Capture Packet
“Pcap_Read()”

v

h 4

Process Packet
“Pcap_Callback()”

Sniffer

Network
Monitor

Web
Browser

FTPServer

User Space

A\ 4

59

Figure 45: The packet process structure of LibPCAP.

Close Interface
“Pcap_close()”

The first step of using LibPCAP is device initialization. In the Linux system, all network
devices are visual files. They are above the device driver, and below the network protocol
layer. The real network adapters have a name eth0, ethl, eth2, and so on. LibPCAP supplies a
device lookup function “Pcap loopup device()” to list all network devices and uses
“getifaddrs()” to get their IP address and related information. Then all found devices are

added to the “pcap if” list by “add addr to iflist()” and “add or find if()”.

After all network devices are found, function “Pcap open live()” can be used to open the
devices in the “pcap if” list. Snort will open the network device configured in the file
“snort.conf”. If nothing has been configured, it will try to open all devices in the “pcap_if”
list. It then uses “InterfaceThread()” to create a thread for each device interface. In addition,
Snort supports three socket types: “SOCK_PACKET”, “SOC_RAW” and “SOC_DGRAM”.
“SOCK PACKET” is a socket type of linux kernel 2.0 and an early one. It does not include
some packet type information, and the returned packet length is the reading length, not the
original packet length. “SOC_RAW” and “SOC_DGRAM” are new socket types from linux
kernel 2.2. “SOC_RAW?” will directly return the reading data from the data link layer without
any modification. “SOC_DGRAM?” will return the cooked packet, which will remove the data

link layer header of the packets. By default, Snort will use “SOC_RAW?” in promisc mode.

The most important feature of LibPCAP is the BSD Packet Filter (BPF) mechanism. It can
filter out some unnecessary packets, or only permit some specific groups of packets to be read
by the sniffer. Normally, when a packet comes into the network interface, the data link layer
driver will deliver it to the system socket. With BPF, the driver will call BPF to filter the
packet first, and then BPF puts it in its output buffer. Finally, the driver will take control of
the packet again. Before using BPF, the filter configuration needs be compiled first by

“pcap_compile()”, and then applied on BPF by “pcap_setfilter()”.

60

There are four functions which can be used to read packets: “pcap loop()”,
“pcap_dispatch()”, “pcap next()”, and “pcap next ex()”.“pcap loop()” will continue to read
packets until an error; “pcap_dispatch()” can be used to read a number of packets and
“pcap_next()” will call “pcap dispatch()” to read one packet only. On the Linux system,
“pcap_dispatch()” and “pcap next()” are exactly the same, as “pcap_dispatch()” can only
read one packet each time. Snort uses a “while(1)” loop with “pcap_dispatch()” to read one

packet each time and uses an external callback function to process the packet. For Snort, the

callback function is “PcapProcessPacket()”.

On the Linux system, all the live packet reading functions will call “pcap read packet()” to
read a single packet. It will call the Linux system function “recvfrom()” to directly read
packets from the socket, and copy the whole packet data into the location “bp + offset”, where
“bp = handle->buffer + handle->offset”. “handle” is the pcap handler, and the memory of
“handle->buffer” is allocated during the device initialization “pcap activate linux(pcap t
*handle)” for one packet only with a size “handle->bufsize + handle->offset”. The “offset” is
the reserved space for the data link header and normally equals 16 bytes. After reading the
packet, the data link header, such as the time of reading, size of capture and original packet,
will be calculated and filled in “pcap header”. Finally, the packet “bp” and its header

“pcap_header” will be passed to the callback function.

“pcap_next _ex()” is a packet capture function without an external call back function. It uses a
fake call back function “pcap fakecallback()” instead of the external call back function. And
the fake call function will pass the location of the captured packet, and its data link header to
the external program through “userdata” variable. However, the actual data of the packet data

is still in the location “bp”, to which the memory is allocated by LibPCAP.

61

11 IMPLEMENTATION AND RESULTS ANALYSIS

5 Pattern Matching

In the previous chapter, Figure 30 showed a work load between different modules of Snort.
The work load of pattern matching is almost half of the work load of Snort and Snort is still
using a 35 year old algorithm “Aho-Corasick” which is a single thread single process
algorithm. There is a not very efficient multiple threads multiple processes based pattern
matching algorithm at this point. This chapter will analyze some possibility of using some

parallelized pattern matching algorithms to improve the performance of Snort.

The analysis is of deep packet inspection in future computing, and based on the following

differences from the current computer system:

e A general purpose processor is used.

e The processor has a similar frequency to a current computer system.

e There are a large number of cores in the processor.

e The processor may have multiple threads (hyper-thread).

e The bus bandwidth of the processor is bigger.

e The size of the computer word will be bigger, e.g. 64 bit, 128 bit, or 256 bit
e It has a bigger and faster processor cache.

e The system has a bigger memory and the memory access speed is faster.

5.1 General parallelization methods

In general, a job can be parallelized by “function parallelization”, “data parallelization” or
“pipelining”. For different jobs, if there is no dependency, they can be processed in parallel

by “function parallelization”. A large amount of data which has the same processing steps can

62

be processed in parallel by “data parallelization”. For example, the Bit-Parallelism algorithm
is a type of “data parallelization” in a single processor. If a single job can be divided into
multiple sections, and the work loads of each section are similar, then pipelining can be used

for the parallelization.

From the pattern matching algorithms mentioned in the background section, it is easier to see
there are not many non-dependent functions. Hence, function parallelization is not a good

option.

Although pipelining is a direct way to perform the parallelization based on the serial string
matching algorithm, however the job is already very small for each single comparison. When
data is transmitted from one processor to another processor, it has to transfer the data into a
shared memory. As the memory speed is more than 100 times slower than the cache speed,
pipelining may take more time than a single process. Therefore, pipelining is not a good

option, either.

“Data parallelization” may be an easy way to parallelize the candidate text in most types of
pattern matching algorithms. Only the Brute Force algorithm has a totally independent data
relationship, but it is an extremely slow algorithm. Otherwise, a simple idea is to divide a text
string into multiple “p” substrings. An example based on four cores is shown in Figure 46.
The size of the string which is required to be searched by each core is n/p+m, and n/p must be
much bigger than m. Hence, a long pattern or a short text will decrease the performance. In
the application of intrusion detection, the maximum length of an Ethernet packet is 1514
bytes; and the maximum of a jumbo frame is 9000 bytes. After decoding and packets payload
it is relatively too small. In addition, the Bit-Parallelism algorithm is initially designed to
perform data parallelization on a single processor. It is easy to be converted into a multi-

processor platform.

63

Single pattern on a single string single core:

Text String on a single core

Divide a single string into 4 strings in average:
[Sub-String 1 | Sub-String 2 | Sub-String 3 | Sub-String 4

The actual strings required searching by each core:

String 1 on core 1

| Sting 2 on core 2 |
' Sting 3 on core 3 |
String 4 on core 4
l

Figure 46: Data parallelization on Window shift algorithms on 4 processor cores.
In the later sections, some modified pattern matching algorithms will be described and
analysed. As many multiple pattern matching algorithms are developed from a single pattern

matching algorithm, some single pattern matching algorithms will also be described.

5.2 Reversed Bit-Parallelism Algorithm

Usually, a single character is encoded in 8 bits. However, the modem processors have 32 bits
or even 64 bits, and the word can be increased to 128 bits or more in the future. When using a
single character as a unit, it will waste most of the word width. The Multiple Bit-Parallelism
algorithm described in the background can be used to fill out all computer words. When a
single word is not enough, other processors can be used to supply the extra computer word. A

structure example is shown in Figure 47.

In addition, the role of pattern and text can be reversed based on the bit-parallelism algorithm.
Reversed Bit-Parallelism algorithm (RBP) will analyse the text in the pre-processor instead of
the pattern, and use the known characteristics of the text to check if a pattern is in the text in
the search engine. If the pattern exists somewhere in the text, a post-processor can quickly
check its positions. Because the length of the text string is usually not short, it can be easily
distributed into multiple processors by data parallelization and the ideal Bit-Parallelism

algorithm.

64

| Processor #4 | Processor #3 \ Processor #2 | Processor #1 |

Patterns | | | | Pattern 4 Pattern 3 | Pattern 2 | Pattern 1 |

Figure 47: Multiple Bit-Parallelism algorithm for multicore computers.

For a pattern matching algorithm, some definitions are listed below:

A string is defined as a one-dimensional finite sequence of symbols within an
alphabet) with a finite set of characters (o), both pattern and text are strings.

Let p be a pattern of length m, and T a text string of length n.

A set of multiple patterns is presented by P = {p1, p2,...pr};

A text T has multiple substrings {t1, t2,...tr} from left to right.

The number of bits in a computer word (the word size or word length) is denoted by
w.

The number of cores/processors in a multi-core processor or distributed computing
environment is denoted by c.

Integer 1 (1 <= (m-1)) will be used for the index of a pattern; and integer j (j <= (n-1))
will be used for the index of a text.

Asterisk (*) denotes any (other) characters in the alphabet).

Symbol € denotes an empty character.

A string is written from left to right, the leftmost character is the first character; in the
memory, a computer word will store from right to left and the first bit is stored at the

rightmost position.

In the pre-processor, an S table is used to present the states (existing / not existing) of a

character from the alphabet in the position of the text string. With the Reverse Shift-AND

Algorithm, each character in the alphabet has a default state 0 (not existing). By calling over

each character in the text, the states of each character in the text will set its position bit to “1”

at the position of the text. In another word, the “1” in the S table indicates the character of the

65

S table is in the position of the text. After the pre-processor, each character in the alphabet has
its own S table. Each S table has a size of n; and the total size of the S tables is (¢ x n). The

pre-processor has a time complexity O(n).

Pre-processor Pattern R Table
Text:| [| [e[u[n]e[c[nJufo]n[n]a]n]a] a|0f/ojlofo|o|ojojojo|ojojo[o]|71]|0]1
n|ololololo]1]oo]1]0lo|1]1]0]1]0
s@ | || [ofolofolololo[ofo[o[7]0][7] = GToTeTeTaToTol i 0 ol 7 ol T
s /|77 [o]oJofo[7]o[0[o]o[o[o]0]0] ololololo|o|olo]olo|o[7|0]of0]0]0
ste) (/[/['[7[o]o[7]o[o[o[o[o[o]o]o[0] | w [oo[o]o[7[o[ololo7 [0 o[oTo o]0
sm [2[7[7[o[o]7]oJo]1[o[o[7[7]e]7]0] | " [21%1910]0}710]0171 10 037 110170
c|ololo|o[o]|o]ol7]o|o[o[o[olo|o]0
S() [0]0fo]o[o]o]o]o[o[o[71]0[0]0]0]0] e [0l0Tol 7 olol7oloTololoololo o
sw) [o]ofofo[1]o]o]o[o[1]0[o0]0[0]0] | b ition: 3210
s¢) [0]o]ofofo]ofo[o[o]o[o]o[o]0o[0]0] n-m
S |l&—7 x Computer Word in a 16-bit machine—3»|
index Pattern R Table with shift
J pljl
(Predefined) -1 [1]a[a[1[1]1[a[1[1]1[1[1][1]1]1]1
0 a>>0 [o[o[ofoo]o]Jo]o]o]o]o]ofo]1]0]1
1 n>>1 [gllolofofo|o]1[o]of1|ofo[1]1|0]7]0
. 2 n>>2 [olollofolo|olo[1]alo]1[o[o[1|1]0]1]0
g 3 0>>3 ololol|/0|O|O|O|O|O|O|O|O|O|7|0|0]0|0]|O0
2 4 u>>4 [glolalollo|olo]o[1]|o]olo]o][1[0[o|oofo]o0
¢ 5 n>>5 [glolololo]lolo|o|o|ao]1]o]o]1]0]0|1|1]0]1]0
6 ¢>>6 [plololololollo|lolo|lo|lo|o|lo|[71|0|o|o|o|o]o]o]o
v 7 e>7 [glglo|o]Jololo] 0[0[o][7[o]o[7]o]ofo[0[0]0]0]0]0]
end o pater AND [0]oJoo[o]o]o]o]o]o]o]o]o]7]o]0]
Position: 3210
Calculation State Table: nem

State[j]=State[j-1 1&(S[Jj 1>>j)
Figure 48: Search pattern “announce” in the text “anannouncenue” with one-core in a 16-bit computer
by Reversed Bit-Parallelism (Reversed Shift-AND) Algorithm, n =13, m =10, ¢ = 1, w = 16. Characters
are encoded in ASCII. (Compare with Figure 7 to see the differences with BP)

By queuing the S table in the order of pattern, it is easy to identify a slope line with “1” from
the first row to the last row if the whole pattern appears in the text, which is shown in the R
table in Figure 48. By shifting i bit on each row (where i is the index of the pattern), the all
“1” line can be queued in a single vertical column. By AND all rows in the R table after a
shift, we can have a single word, the “1” bits in that word right to left indicate the position of
the pattern in the text. If the pattern appears in the multiple position of the text, there will be
more than one “1” bit. If there is not the pattern in the text, the whole word is 0. Because the
position bit indicates the position of the first bit of the pattern, it can only be in the range of
between position 0 and position (n-m). It is not necessary to consider the calculation outside

66

of this range, which has the grey background cells in the figure. An example of the RBP

algorithm is shown in Figure 48.

In the implementation, it is not necessary to store the whole R table in the memory. A state
word can be calculated when each character in the pattern has been read. The value of the
initial state is 1w. The current state: State[j]=State[j-1]&(S[j]>>)). It is different with Baeza-
Yates & Gonnet’s bit parallelism algorithm, which shifts the calculated state to the left by 1

bit (State[j-1]<<1). The search engine has a time complexity O(m).

In addition, if a calculated state equals 0 when only a part of the characters in the pattern have
been loaded, it is not necessary to continue reading the rest of the characters, because it is
impossible to find a match in the range of text. A quick state check can be performed after

each state calculation.

Finally, the post-processor will read characters from 0 to (n-m) in the final state. It has a time
complexity O(n-m+1). Also, if the search does not require knowledge of the position of the
pattern in the text, the post-processor can be omitted. If the final state is 0, it means the pattern

is not in the text; otherwise, there must be at least one pattern in the text.

In a multiple processor environment, the text can be divided into multiple sum-strings, T =
{tl, t2,...tr}, if the string is longer than the length of the computer word. Because the current
CPUs are mostly 32-bit or 64-bit, and only some GPUs have 128-bits or 256-bits, this
condition is easily met by the text. After dividing, the first (r-1) substrings have a fixed
length, which is the length of the computer word. The last substring contains the rest of the

characters (n - (r-1)w).

The pre-processor has exactly the same process as the algorithm working on the single

processor, and there is no data exchange between the different processors. In the search

67

engine, each processor will continue to process its own substring. However, some data is
required from other processors. Therefore, the state calculation formula can be changed to the

following formula.

State[d[] = State[d[/-1] & (S[c + gl >> %)) & (S[ctq+ 111 << (w%m) ;

if(j==(g+D w) { g++; }
where ¢ is a index integer and the initial g = 0;

All shift variables in the formula are from the result of the pre-processor, and not the
calculated state from the search engine. It requires a calculation to get the shift size, not using
the default 1. If it shifts the calculated states, it may reduce some waiting time to synchronize
different processors. Because threads are controlled by the operation system and a single
thread usually does not monopolize a single processor, it is hard to keep all processors

synchronized all the time.

An example is given in Figure 49. In this example, n>m>w and contains almost all possible
situations in a multiple processor environment. The text contains two copies of the pattern:
one is at position 2 and another is at position 17. In the processor 1, the search engine will
stop after the second character of the pattern, because State [1][2] = 0. The following
calculated states require “AND” with State [1][2], which will not have bit “1” any more. In
the processor 3, this processor is only responsible for characters T[24...27], but the maximum
possible position for the pattern in the text is (n — m) = (28 — 10) = 18. This processor does

not need to perform the search after the pre-processor.

In general, there are two ways to perform multiple patterns matching based on the Reversed
Bit- Parallelism algorithm. The most basic method is the Brute Force. It will use the single
pattern matching in the previous section to test all patterns one by one. The advantage of this

method is that any pattern can be tested without any pre-process, so therefore any new pattern

68

can be directly tested. A second choice is converting all patterns into an automaton, and

running over all nodes on the automaton. In this case, all the patterns require the pre-process,

and the number of total nodes is smaller. If the automaton is not very big, all node

information can be saved in the cache; if the automaton is too big, some internal information

will need to be saved in the memory which may slow down the speed.

Pre-processor Pre-processor Pre-processor Pre-processor
in core 3 in core 2 in core 1 in core 0
Text:| [| | [e[c]n]e] [c[n[ufo[n[n[afn] [nfa].[ef[u[n]e[c] [n[ufo[n[n[a[n]a]
spEla) | o] ofofo]o]o]o]o]||st21a) [o]o]o]o]o]o] 1]0]| sli@|o]71]o]o]o]o]o]0]| siol@) [0]o]o]o]o]1]0] 1]
s@Ele) | o[oJoJoJo]1]0]o]||st21e) [1]0]0]o]o]o]o]o]| siie)|o]o]o]o]o]o]o] 1]| slolc)[0]o]o]o]o]o] 0] 0]
s@Ele) | 0| oJofo]1]o]o] 1] st21e) (o]0 o]o]o]o]o]o]| slie)|o]o]o]1]o]0] 1] 0]| sioie)[0]o]o]o]o]o] 0] 0]
sEIn)| o[ofoJofelo]1]a]||stain) [0 71]o]o] 1] 1] 0] 1]|/s[un)[1]0]0]o]o] 1]0]o]| sloln [71]0]0] 1] 1]0] 1] 0]
s[3lo)[0[oJoJoJoJoJo]o]||sl2ic) [0]0]0[1]0]0]0]0]| sl10)[0]0[o]o o]0 o] a]| slole)[0]0[7]0]0]0]0]0]
silw) [[7[o]ooJolo]o]| st2iw) [0]o[1] oo]eTo]| stuu[o]o[o o] 7[00 o]| stonw)[o]7]o[0]0o]0]0]
s31) [o]o]o]o]o]o]o]o]|| st21*) [o] o] o[o]o]o]o]o]| st [o]o][o]o[o]o]o]o]| sto1*) [o]o]o]o]o]o]o]0]
e e o = " e~ e o =
R[0] Table with shift
a>>0{0]ofo]ofo]1]0]1
R[1] Table with shift n>>7[1[0|0[7[1]0]7]0
a>>0[0[1]o[oJoJo[oJo]n>>2{1]0|0|1|1]0]1]0
R[2] Table with shift n>>7|7[0|0|0]|0|7[0|0]|o>>3|0|0|7]|0[0f0]0][0
a>>0[0[o[ofoJofo]1|0|n>>2]1[0|0]0|o|7]0]0]u>>4[0]7[0]0]0[0]00

R[3] Table with shift n>>7|0|1[0|0[7]7[0]71]o>>3|0(0|0|0|0[0olo|0o]n>>57]|0|0o[7|71]0[7]0
a>>0[o]oJofoJoJoJoJo]n>>2[1]0]0]0[7[1]|0|0|u>>4[0]0[0] 0| 1[0]0]0]c>>6]0]0]0]0]o]a]a]0a

n>>1|0fofolofolo]1]o]o>>3[0]0[0|1]0]o]o]o|n>>5]1]0[0]0[o]1]0]o]e>>7[0]0|o|ola]olo]o

n>>2|0fofolololo]1[o]u>>4[0]0[1[00o|o]o]o]c>>6[0[0[0]0]0o]ofo|7
o>>3|0ofofofofofo]o]n>>5]0]1]0[0]1]1[0[1]e>>7[0]0]0]1]0]0]1]0]
u>>4|0|0|ofo|o]ofofo|c>>6|1|0|0]|0]0|0|0]0
n>>5(0[0]o[o|ofo]1]o]e>>7|0[0o[o[0]0]o]0] 0]
c>>6|o0(ofololo]1]o]0
e>>7|0]0[0]0[7]0]0]7] € core >

| €¢———Core 3——P| €¢———Core 2—Pp | ———Core 1|

Pattern index

Calculation State Table: State[c][j]=State[c][j-7 1&(S[c+q][j 1>>(1%w))&(S[c+q+1][j I<<(w-j%Ww));
where q=0;if(j==(q+1)w){q++;}
C

pljl J Core 3 Core 2 ore 1 Core 0
-1 {1111 11|11 111111111 111|111 1|1]1 11111111111
a 0 |olojolo)o|o|o|o0 o|jo|o|lofofo|1]|0 o|1(0|0(0|0|0]|0 g o(ojofo|o|1]|0|1
n 1 |0jojofolojofof1 o|o|1(0(0f|1]|1]0 1|11|0(0|0|0(1]0 lg oj1|/0(o0|0|1]|0|1
n 2 [o]olo[o[o[o]olo] [7]o[7[o[oo[7]7] |, [o]o]7[o[o[o[o]7] e [0]0]7[0[0[7[7]0] |,
o 3 (oflojojo|jo|lo]|of0 ojo|o(o(ojo|1]0 g 0|0(0|0[0[0|0[0|ynenj=2|0[0]|0]|0O[O|T]|0OfO §
u 4 |0jo|lo|lo|ofofo]0 olojo|ofo|of1]0||% (o|ofo|o|ofo|0O]|0 1(0l0]0]|0|71|0|0]| |3
n 5 (olojojlo|jojo|of0 olojo|(1|/0(0|1|0 ¢ o|1(1|10(1|1|0]|0 olo|1(o|0|1|0|0 v
c 6 (0/0|0|0|0|0O|O|O0 olojo|(1]0(0|1|0 o|o|o|o|ofofofo0 ojfojo|(o|o|1]|0|0
e 7 |ojojojofo|ojo|0 o|lolo|l1|l0|0|1|0|V o|o|o|o0|0f(o0f0f0 0(0(1(0|0|1]0]|0|
Position # = i + cw: 18 17 16 SOl 15 14 13 12 11 10 9 8 76543271 P
n-m pattern 0 pattern

Figure 49: Searching pattern “announce” in the text “anannouncenue.annannouncence” with four-core
in a 8-bit computer by the Reversed Bit-Parallelism (Reversed Shift-AND) Algorithm, n =28, m =10, c

=1, w=16. Characters a

re encoded in ASCII.

RBP is an algorithm based on the Bit-Parallelism algorithm. It has inherited some

characteristics from Bit-Parallelism. A comparison of them is shown in Table 3.

69

Table 3: RBP vs. Bit-Parallelism (BP)

Characteristics RBP BP
Time complexity of pre- | =O(n+0), (longer) =0(m+0), (shorter)
processor
Time complexity of search | <=O(m), (shorter) =0(n), (longer)
process
Post-processor <=0(n-m+1), but steps are | Not required

very simple and fast, and not
required if no matching
pattern in the sub-text.

Complexity of process in pre- | Very simple Very simple
processor

Complexity of process in | Verysimple Very simple
search process

Complexity for complement | Easy Easy
symbols in the pattern

Complexity for a range of | OK Easy
characters (e.g. 0-9, a-z) in

the pattern

The maximum number of | =n/w+1 Depending on the total length
threads/processors which can of pattern(s)

be used in the search

For many advanced pattern matching algorithms, such as automata algorithms, sliding
window algorithms and bit parallelism based algorithms, their preparation process has been
done in off-line in most applications, which does not cost the pattern search time (in-line
processing time) for each individual pattern search. The pre-process is only required once for
the search of multiple know patterns with different coming (unknown before read) text.
However, RBP requires a quick pre-process on the text in such application. RBP is good at
some applications such as text analysis, which searches multiple coming patterns with a

known text.

5.3. Parallelized Aho-Corasick (PAC) Algorithm
As a multiple patterns matching algorithm, the Aho-Corasick (AC) algorithm is widely used

in the intrusion detection area. It uses automata technology and spends a large amount of time
in analysing the patterns and building a DFA in the preprocessor. Then it can have a very fast
speed to perform the search in different texts regardless of the size of patterns. The time

complexity of the search is only O(n) or O(n x log o) if the automaton is stored in a direct

70

access table. Although the preprocessor requires a long time, it can be performed off-line in

most applications.

The original AC algorithm uses a single character as a unit to build DFA, and then parses the
text with calculated DFA based on the single character unit. As a single character is encoded
in 8 bits, a 32 bits processor word can fill 4 characters in total and a 64 bits processor can
process eight characters in total. Hence, the idea of paralleling the Aho-Corasick algorithm is
to utilize multiple characters (“‘d” characters) into one character set. Then the single job can
be divided into ¢ equal parts. The maximum of “d” is “w/8”, e.g. 4 in the 32 bits processor;

and 8 in the 64 bits processor.

An example (d = 2) is shown in Figure 50. A text with 15 characters has a time complexity
O(15) in a single core system with the original AC algorithm. With the parallelized AC
algorithm in a dual-core system, both cores spend O(7) to finish the search process. If some
character set can be filled up by the pattern characters, the empty bits can be filled with “0 to

build the DFA, e.g. the last character “e” in the pattern in the example of Figure 50.

asoat[[[| [[[] Jof1[ofo]o]o]o]1] Pattem: [A B|C D|E |
_ Text:
Boxa2| | | | [[| [Jolr]o[o]ofo]7]o] Single Core [1]2[3]4[5[6][7]8]9]10]11]12]13]14]15]
A=0x41 B=0x42 Due CO[1 [J2]3[]4]5]6]7]
AB=0x4142[0[1]0[0[0]0]o[71]o[71][0[0[0]0]7]0] Coect [1]2]3[]4]5]6]7]

Figure 50: Parallelized Aho-Corasick (PAC) algorithm with 2 cores, d = 2.

However, a big “d” size will have a much bigger automaton and they have an exponential
relationship. A relationship between the number of states in the automaton and the size of “d”
is shown in Table 4. By default, the AC algorithm uses the states content as the index of all
states; therefore, an empty state will still need a memory space. From the table, it is easy to
see that only “d = 2” is acceptable at this point owing to the memory usage. A solution to the

huge memory consumption is hashing.

71

Table 4: The number of states in the automaton vs the size of “d” in the PAC algorithm.

No. of characters in Number of states in the Size of memory | Size of memory
character set - “d” automaton in 32-bit OS in 64-bit OS

1 (281 =256 5kB 7 kB

2 ((2)®)% = 65,536 1.25 MB 1.75 MB

4 ((2)8)* =4,294,967,296 80 GB 112 GB

8 (2)%8 = Huge Huge

18,446,744,073,709,551,616
d (2%*

In the Parallelized Hashed AC (PHAC) algorithm, the group of a character set can use a hash
algorithm (e.g. CRC) to map into a small table, e.g. 64 bits can map into 16 bits or 8 bits.
With hashing, there is a possibility that a mismatch will be detected as a match. Therefore, a

full single pattern matching is required at the end of PHAC when a match has been detected.

5.4. Testing and Results

Some of the above pattern matching algorithms have been implemented, and tested on a 64-

bit computer with Linux 2.6 x64. All programming has been carried out in “C” programming

language.

All the following tests have been carried out on an Intel 17 computer with two CPU sockets.
The CPU is Intel Xeon E5520, 4 cores with 2.26 GHz running frequency with hyper-thread
enabled. The CPU has two 128 KB L1 caches; one 1MB L2 cache; and one 8MB L3 cache.
The system has eight banks of 2GB DDR3 1067 MHz memory. The processor has a 5.86
GT/s memory accessing speed. The system has in total 16 threads and the Linux system

BogoMips is 4533 for each thread.

Because all tests are running in a real computer environment, many factors may affect the
results, such as memory usage, hard drive usage, network, system kernel programs and other

user space programs. During the tests, all test processes have been set with a high priority to

72

reduce the influence from the user space programs. However, some kernel space programs

and high priority system programs may also affect the test results. In addition, all results are

an average value of three tests.

Furthermore, in the pattern matching tests, the test results may show a big difference in
different patterns and tests. All test results in this chapter are approximate values. However,

they can still provide a general idea about the performance of the different algorithms.

5.4.1. Single Pattern Matching in a Single-Core System

For the single pattern matching algorithms, three different algorithms, including Bit-

Parallelism (BP), Reversed Bit-Parallelism (RBP) and Horspool, have been evaluated.

In the evaluation, the recorded time includes all in-line processes and no off-line processes.
For example, the time of RBP includes both the pre-process and search process; the times of
BP and HorsPool only include the search process and not the pre-process. At the end of the

search process, all occurrences and the location in the text will be returned.

Test 1: Search for a single 7 characters pattern in variable length of texts, the alphabet) is

256. There is only one occurrence in each search. The result is shown in Figure 51.

10
8
€ 6
£
[=@ BP
2
HorsePool
0__ e ———
O O O O O O O O 0O O O O OO0 OO o o o o
N < O 00 O N < W O AN < WO AN < O O N
= =+ " N N N NN MmN on on - <
Length of text string (n)

Figure 51: The performance comparison of single pattern matching algorithms when the length of
pattern is 7 characters, and the length of text varies.

73

Figure 51 shows that HorsPool is still the fastest search algorithm in this test, RBP is slightly

faster than BP.

Test 2: Search for a single 3 character pattern in variable lengths of texts, the alphabet) is

256. There are multiple occurrences in each search. The result is shown in Figure 52.

10
8
Es
o e —e—RBP
E 4
" / —@—BP
2 o ek
/‘I HorsePool
0__
O O O O O O O O O O O O O O O O o o oo o o
N < © 00 O N < ©O 0 O N < OO0 O N < OV 0 O N
T+ NN AN NN O NN
Length of text string (n)

Figure 52: The performance comparison of single pattern matching algorithms when the length of the
pattern is 3 characters, and the length of text varies.

Comparing Figure 51 with Figure 52 shows that HorsPool has a slower search speed with

multiple occurrences in the text. Both BP and RBP have similar results to Test 1.

Test 3: Search for a single 64 character pattern in variable lengths of texts, the alphabet) is 1.

There are multiple occurrences in each search. The result is shown in Figure 53.

200
(7]
3 /
o 100 RBP
- 50 . el B P
/ — HorsePool
0 —— -
128 192 256 320 384 448 512 576 640
Length of text string (n)

Figure 53: The performance comparison of single pattern matching algorithms when the length of the
pattern is 64 characters, and the length of text varies. There are multiple occurrences.

74

With a decrease in the size of the alphabet, the number of occurrences in the matching
increases, and the performance of HorsPool decreases. Test 3 gives the worst scenario of
HorsPool. However, it is still better than BP, but worse than RBP. Therefore, HorsPool is a
good single pattern matching algorithm when the alphabet is big, and the number of

occurrences is small.

Test 4: Search for a single pattern with variable lengths in a fixed length of text with 640
characters. The alphabet) is 256. There are multiple occurrences. The result is shown in

Figure 54.

140
120
100

e==t==RBP

Time (um)

== BP

HorsePool

VeSS Y IRAELS TSN ES S

Length of pattern (n)

Figure 54: The performance comparison of single pattern matching algorithms when the length of text
is 640 characters, and the length of pattern varies. There are multiple occurrences.

Figure 54 confirms that when the length of pattern increases, the performance of Horspool

decreases faster than RBP.

5.4.2. Multiple Pattern Matching in a Single-Core System

In the test of multiple pattern matching algorithms, the following algorithms are included in

the testing:

e BP for multiple patterns
e RBP with Brute Force

e RBP with DFA automaton

75

e Aho-Corasick (AC) for DFA, the “acsmx’ module of Snort.
The time spent by the pattern matching algorithm excludes all off-line pre-processes. At that

time, all data have already been read into the memory.

Test 5: Search for a pattern set with 10 patterns in variable lengths of texts. The alphabet)’ is

256. All patterns are in the texts. The result is shown in Figure 55.

40
35 /

_. 30

g 25 /

=20 =g [\| BP

£ 15 8- RBP-BF

5 ~ ' ==4=RBP-DFA
0 ks

- AC
N

,,)Q

O

S
&

O e O S & &
> ®© P O S MRS SR S

Length of pattern (n)

Figure 55: The performance comparison of multiple pattern matching. There are 10 different patterns,
and all patterns are in the text.

Figure 55 shows that AC has the fastest matching speed, multiple patterns BP is the slowest

algorithm, and the speeds for RBP with Brute Force and RBP with DFA are very similar.

Test 6: Search for a pattern set with 100 patterns in variable lengths of texts. The alphabet)’

is 256. All patterns are in the texts. The result is shown in Figure 56.

Figure 56 shows that AC has the best speed, the time spent by multiple patterns BP increases
greatly. The speed of RBP is also slower; however, RBP with DFA automaton has a better

speed than RBP with Brute Force.

Therefore, all above tests shows that AC is the best pattern matching algorithm in a single

process environment.

76

400
350

300 —

200 / = [\ BP

—#—RBP-BF
100 -
—=>é=RBP-DFA
50 -

N
(O
o

Time (um)
=
u
o

/v AC
Q Q
) Q
NN

Length of pattern (n)

Figure 56: The performance comparison of multiple pattern matching. There are 100 different
patterns, and all patterns are in the text.

5.4.3. Multiple Pattern Matching in a Multi-Core System

In the multi-core system, the programs use “fork()” to create multiple processes. “mmap”
shared memory is used for exchanging big information; “signal” is used to send the one-bit
message between different processors. In the shared memory, “semaphore” with “busy wait”

is used to avoid data race and deadlock.

250

/ =@-RBP-BF with single core
150 —

/ ———RBP-BF with 4 cores
100

/. === RBP-DFA with single core
50 4 /._.’.’H RBP-DFA with 4 cores
-f =0=AC with single core

O

AC with 4 cores

Time (um)

Length of pattern (n)

Figure 57: The performance comparison of multiple pattern matching. There are 100 different
patterns, and all patterns are in the text.

Test 7: Search the same pattern set with Test 6 in variable lengths of texts by multiple
processes on a multiple core machine, the alphabet) is 256. All patterns are in the texts. The

result compared with the single process result in Test 6 is shown in Figure 57.

77

Figure 57 shows that all parallelized algorithms have a slower matching speed than the
original sequential algorithms owing to the small granularity of the text length. A large
amount of time is spent on the memory operation. Therefore, the pattern matching algorithms

are not suitable to be parallelized for network packet inspection on a general computer.

55. Conclusion
In the single pattern matching, HorsPool is still the best pattern marching algorithm when the

number of matches is small.

In the general computer, RBP is slower than HorsPool most of the time owing to the pre-
processor. RBP spends a large amount of time and memory for the pre-processor to read the
text, and the total matching time will be large when the text is very long. In addition, RBP is
not good at handling a large size alphabet. Some unicode encodings, such as the 16-bit,
variable-width UTF-16 and 32-bit, fixed-width UTF-32, will require very big memory. By
dividing a single unicode encoding into multiple parts and processing them in sequence, the
size of memory can be reduced. For example, a 32-bit encoding can be divided into four 8-bit
encodings. Then the total memory cost will be only 4 x 255 x w bit. As a Bit-Parallelism
algorithm, RBP may be more suitable on a hardware processor, such as FPGA, which will
have less time to organize the bits in the memory. And the tests show that RBP has a faster

matching speed than the traditional BP algorithm.

A more detailed comparison between the RBP and a Windows-shift algorithm, such as
Horspool, is shown in Table 5. Windows-shift based algorithms beat the process speed on the
matching possibility. They can easily ignore those unnecessary matches, and safely shift the

(3

window. RBP can simulate a “windows-shift” by checking the ‘“calculated state”, if the
“calculated state” is 0 in the shift-AND algorithm, the following comparisons can be ignored.

It may speed up the matching process when there is no matched pattern in the text.

78

Furthermore, when the length of a word becomes larger, e.g. from 32-bit to 64-bit, the
performance of window-shift algorithms will not increase, but the overall performance of
RBP will be increased. However, a serious disadvantage of RBP is that the preprocessor of

RBP is in-line in most applications.

Table 5: RBP vs. Windows-Shift (e.g. BM, KMP, Horspool)

Characteristics

RBP

Window-Shift

Time Complexity of the
Pre-processor

=0(n+0), (slower)

=0(m+0), (Horspool)(faster)

Time Complexity of the
search process

<=0(m)

<<=0(nxm) , (Horspool)
Depending on the possibility (the
size of alphabet)

Post-processor

<=0(n-m+1), but steps are
very simple and fast, and
not required if no matching
pattern in the sub-text.

Not required for most algorithms.
However, =0O(m) for some
algorithms (e.g. Wu-Manber) to
conform the matching

Longer computer word (w)

A longer w can help the
algorithm to process more
characters in one clock
cycle. Can reduce the
number of threads required
in the search.

Does not help the algorithm to
increase the speed

Safely ignores some
unnecessary matches

Stops to match the
remaining characters in the
pattern when the calculated
State (variable) is O.

Fixed length w.

Through Window shift.
Varied length, depending on the
shift algorithm.

Therefore, RBP may be unsuitable for some applications, which already have all defined

patterns before the search process. It may be used in an environment in which the next pattern

is chosen or generated after having received the search result of previous patterns. An

example is the “Intrusion Pattern Discovery Module” designed by Lih-Chyau Wuu [44]

which is mentioned in the background session. In such a system, when some new rules are

generated, the system will take a very long time to add these new rules into the original rule

set, and compare the new rule set to the RTN and OTN database. RBP may be used during

this time.

In the multiple patterns matching algorithm, the Aho-Corasick (AC) algorithm is indisputably

the best algorithm in a single core machine. The slowness of the RBP is due to the online pre-

79

processing of the text string. RBP with DFA is a little faster than RBP with Brute Force.
However, the bigger memory consumption on the calculated states slows down the processing

speed.

In the multi-core environment, none of the parallelized algorithms mentioned in the previous
session wins the test. Most existing parallelization APIs, such as Pthread, OpenMP, and
shared memory have a big overhead. With a big granularity, the overhead can be ignored;
however it is a big issue for small granularity of data. In such applications, most of the time is
spent on the memory operation rather than calculation. On a hardware implement, such as
FPGA, the above parallelized algorithms may be applicable. However, some further tests are

required on the feature.

In the application of intrusion detection, the traffic has millions of packets per second in the
gigabit Ethernet network. The granularity of each packet is extremely small compared with
most other parallelizable applications. Therefore, the sequential AC algorithm is still the best

option for deep packet inspection, such as the IDS, and IPS system on the general computer.

80

6 Pipeline and process management system

With a small granularity, parallelized processing will require more time than sequence
processing. By increasing the granularity, the overheads can be reduced. In the intrusion
detection program, data is processed at packet level. To increase the granularity, a

section/function parallelization of Snort will be discussed in this chapter.

6.1 Introduction

The goal of this project is to force more and more processors and cores to work together in

the whole packet processing process in the application of Snort.

Some big programs, such as Snort, have a very complex structure. Some parts of the process
can be easily parallelised and some parts have a dependent relationship with a previous result.
Therefore, a pipeline system can be used to segment the whole process. However, a good
pipeline system requires a similar load on each of the segments to reduce the waiting time for
the previous results. As described in the discussion in Chapter 3.1, the work load on different

parts of Snort is not evenly distributed, and changes dynamically depending on the traffic.

A group managed pipeline structure cannot only segment the whole process into different
pipelines, but also parallel the work load on each single segment by different parallelization

methods to speed up the heavy load segment.

Amdahl's law indicates that the maximum speed up of a parallelized program depends on the
percentage of the unparalleled parts. The job of the group managed pipeline structure is to
reduce the size of any unparalleled part and try to use different methods to parallelize

different segments of a program, rather than one method to parallelize the whole program.

81

6.2 Pipeline and Buffer

Pipeline is a set of series of processes connected by a group of data processing elements. It is
a parallel processing method which is first used as an assembly line to increase the overall
throughput. It requires a buffer between two continuing segments, and when an object goes
through the pipeline, some extra time is required in the buffer. Therefore, the overall

processing time for any particular packet is longer than a sequential process.

As discussed in the previous chapter, Snort consists of a few different parts: packet capture
(PCAP), decoding, packet preprocessing, packet detection, post-processing, and reassembled
packets reprocessing. The left flowchart of Figure 58 shows the sequential processing of the

officially released Snort 2.8.

SnortProcess () ; SnortProcess () ;
pcap_dispatch(PcapProcessPacket); pcap_dispatch(PcapProcessPacket);

PcapP Packet () ;
capProcessPacket ((*grinder) (&p, pkthdr, pkt);

‘(*grinder) (&p, pkthdr, pkt); ‘ ¢
¢ Preprocess (&p) ;

Preprocess (&p) ;

Preprocess

v
Detect (p) ;

Output

T owu]

Figure 58: The processing flowchart of Snort, the left flowchart shows the structure of official Snort 2.8;
the right flowchart shows the pipeline structure of Snort.

82

PCAP reads packets from the network card, copies the reading packet into a buffer and calls
the callback function of Snort directly to process the captured packet. Then, the packet
decoder will convert packet data into a readable format. There is no dependency relationship
between any contiguous packets in the decoding process. Packet pre-processors inspect the IP
header part and a small amount of the data part of packets. Then packets changed by the pre-
processors will be passed to the next detection stage, except for some special packets which

will stop here.

The detection engine normally performs some different types of multiple patterns matching,
marks any triggered signatures and also performs the no-content pattern matching by the
detection plugins. Some fragment packets will be bypassed by the detection engine. And then
the post-processors will output the events in the configured methods, such as output files,

syslog server and database server.

Finally, all fragment packets will be reassembled and sent back to the preprocessor. This
operation has a dependency relationship with some contiguous packets. It needs to access a
previous packet buffer and all packets coming into this stage require the result from the
previous preprocessing and detection, and some packets will be modified by those sections.

Therefore, this part cannot be processed in parallel with the previous detection section.

Buffers Buffers Buffers Packets Inspection Buffers Reassembled Packets Inspection

Decode r@ Preprocessors r@ Detection outputs @ Detection

76% 1% 7%) 1%

2%

13%

Thread Pool Thread Pool

Figure 59: The pipeline process of Snort.

Normally, the whole process can be divided into five parts: PCAP, packet decoder,
preprocessors, detection & output, and the reassembled packets process as a stand-alone

section. A process structure is shown on the right side flowchart of Figure 58 and Figure 59.

83

The buffers in the middle of two consecutive sections are stored in the shared memory. A

circular buffer can be used to reduce the lock and mutex of multiple processes accessing the

shared memory, and also can avoid the data race and deadlock. An example of the circular

buffer is shown in Figure 60. Each circular buffer has one producer and one consumer and

each of them works independently, and points to the current working position in the buffer.

Only a producer can “write” a new packet into the buffer. Generally, there are three different

buffer states: empty, full, and neither empty nor full. The conditions of the buffer states are

listed in Table 6.

Figure 60: The circular buffer of the pipeline.

Table 6: The states of the circular buffer.

Buffer Condition Buffer States | Note
. L . Writeable but not
Producer index == consumer _index Empty Readable
((producer_index + 1) % BUFFER _SIZE) == Readable but not
; Full)
consumer index Writeable
Others Neither empty Readable and Writeable
nor full

There are also two types of circular buffer: “data buffer” and “address buffer”. When

LibPCAP read the new packets from the driver, the whole packet data and the header

information need to be saved to a shared memory buffer for later inspection by other

processes. The packet data should be kept in the buffer until it has gone through all pipelines,

84

and the PCAP should continue to capture new packets. The whole packet information for a
single packet is kept in a struct “ePacketPack”, and the structure is shown in Figure 61. The
“data” circular buffer is used to save this packet information, including captured packet data,
its captured header, and decode packet information. A struct of “data” circular buffer
“CircularDataBuffer” is shown in Figure 62. After all inspection processes have been carried
out, the saved packet will be deleted at the end of the pipeline. The circular buffer is located

in the shared memory, and can be accessed by any of the Snort processes.

struct pcap pkthdr { /% original captured packet. Defined in pcap.h */
struct timeval ts; /% time stamp */
bpf u int32 caplen; /% length of portion present */
bpf u int32 len; /% length this packet (off wire) */
b
typedef struct ePacketPack { /% a buffer keeps all packet information */
voidk cdb; /% point to the buffer address */
struct pcap pkthdr pkthdr; /% captured packet header */
u_char pkt[PCAP MAXETHPACKET] ; /* captured packet data */
Packet p; /% decoded packet information, some will point to “pkt”
*/
char* user; /% user defined information when process packet */
FragTracker ft; /% fragment parameter by “frag2” plugin */
volatile long usage; /% a record of space usage of data circular buffer */
volatile long status; /% a status information of data circular buffer */

} ePacketPack;

Figure 61: The struct of “ePacketPack”.
A PCAP header records the capture time of the packet in microseconds; and the packet size.
Theoretically, the maximum size of the packet is 65536 bytes. However, a packet does not
exceed its MTU during the transmission. If a bigger packet is sent by some device, it will be
divided into a few fragment packets. And when Snort receives those packets, its “frag2”
plugin will reassemble all fragment packets into one packet. This reassembled packet will
have a maximum size of 65536 bytes. Therefore, the packet data buffer “pkt” should have a
size of 65536 bytes. The packet buffer size required by each single packet is about 68 kB. If
the circular buffer reserves space for 10,000 packets, the total memory required by the buffer

1s about 700 MB.

85

typedef struct CircularDataBuffer { /% data circular buffer for packets */
ePacketPack data[SIZE OF DATA BUFFER]; /* a buffer keeps all packet information */

ePacketPack *pd; // producer location
ePacketPack *cd: // consumer location
volatile long pi; // producer index
volatile long ci; // consumer index
volatile long di; // delete index

} CircularDataBuffer;

typedef struct CircularAddressBuffer { /¥ address circular buffer for packets */
void* adata[SIZE OF CIRCULAR BUFFER]; /#* a pointer of current processing packet */

voidk* pd; //producer location
void®k cd; //consumer location
volatile long pi; //producer index
volatile long ci; //consumer index

} CircularAddressBuffer

Figure 62: The struct of a circular buffer.
In the middle of the pipeline, when a pipe passes a packet to the next pipe, it is not necessary
to pass all the packet information. Instead, a pointer pointing to “Packet p” can be used to
pass the inspection job. This job list can be stored in the “address” circular buffer. The data
stored in this circular buffer does not require deletion after reading; the producer can
overwrite the previous data automatically owing to the data accessing prevention mechanism
by the buffer states (i.e. empty, full, or other). In the pipeline, each processing unit in each
pipe except the first pipe will hold its own address circular buffer as its job list, and it is the

consumer of this list. The previous pipe is the producer of the circular buffer.

The control of the pipeline and multiple processes are created in the “SnortProcess” function
in “snort.c” after all Snort initialization and loading all signatures. When a new process has
been created, the child process will inherit all initialized variables from its parent process.
After the initialization of the processes, the mother process will come into the packet capture
loop. Its child processes will begin to perform their own job until a terminal message is

received from their mother process.

86

6.3 Group Management Pipeline

Normally, each pipe of the pipeline requires having a similar job load to achieve the best
overall performance. Otherwise, the pipeline with the heaviest load will become the
bottleneck of the whole pipeline; the other pipes will have to wait for an available space on
the buffer or a candidate packet in the buffer. However, it is difficult to divide the whole
Snort into different sessions on average. The packet inspection session has a much larger
work load than the other sessions. Therefore, multiple processes can work on these big work

load pipes to share the load. An example structure is shown in Figure 63.

Buffers Buffers Buffers Packets Inspection Buffers Reassembled Packets Inspection

1% H

76% 7%) 1%

(TT[TT]

Decode E Preprocessors

2% 13%

Thread Pool Thread Pool

Buffers Buffers
«@ E S-S

@
D
OP

Buffers Buffers I

P
PO
DD
DD
@@

O
@

S
SEEE 13383

Figure 63: The pipeline process of Snort with multiple processes in some pipes.

PP

In such a system, when a job is passed from multiple processes in the previous pipe to
multiple processes in the next pipe, the pipeline becomes complex. The circular buffer only
supports one producer and one consumer. For multiple producers or multiple consumers, it
requires “mutex” or “lock” to avoid data race, which have much more overhead than the

circular buffer.

By increasing the number of circular buffers, the multiple producers or multiple consumers
issue can be avoided. In this pipeline, all processes have their own circular buffer instead of
the main pipeline buffer. The structure of the pipeline is like a tree, which has only one trunk,
more branches on the trunk, more sub-branches on each branch and so on. A structure is
shown in Figure 64.

87

Buffers Buffers Buffers Packets Inspection

Decode ‘@ Preprocessors ~@ Detection

83% 2%

2% 13%

Thread Pool

process process process

E process >
3 process

process process process

?

process process process

% process
E process

rocess

process process process

J

Figure 64: The pipeline process of Snort with multiple processes; all inspection and outputs are in one
pipe.

The whole system is managed by multiple groups, and some groups also have some sub-
groups as their memory. The innermost group of each pipe is built by a group of processes.
All groups have their own group policy, which records some group features such as group
manager, group members, reading buffers and writing destinations. All group members will
work according to their group policy. Each group has a group manager. It must be a process,
which has an ability to create or terminate a group member in its group. This feature can make
the whole system easy and flexible for process management when the number of processes is

large. A change in a single group does not affect the whole system too much.

In this system, a process can write into the buffer of all group memory from a group. The
group members can only read their own input buffer. Therefore, any buffer will have one
producer and one consumer and a circular buffer can be used as the buffer. An example is
shown in Figure 65. Process Al can produce new jobs for Processes B1 and B2 by writing the
jobs into the input circular buffer of Processes B1 and B2. Process Bl can only read and
process the job from its own input buffer. When Process Al distributes jobs to different
buffers, it will use a packet classification module to decide which buffer it sends the packets

to, and the classification rule is recorded in the group policy of the destination group.

88

Process
A1

Figure 65: One processor writing into multiple buffers.

Buffers Buffers Packets Inspection Buffers Reassembled Packets Inspection
ﬂ Preprocessors ﬂ Detection outputs ﬂ Detection
E 13% E 76% 1% H (7%) 1%

Thread Pool Thread Pool

rocess

process)

G000
0

0

%g@

process rocess

process

process rocess

Figure 66: The pipeline process of Snort with multiple processes. Normal inspection and reassembled
inspection are in two different pipes.

[T

process

g

However, this system has a short pipeline and a big work load on the last pipe. According to the flow
structure of Figure 63, the pipeline structure can be modified as

Figure 66. In the new system, the final pipe has less workload than the previous pipe.
Therefore, fewer processes are assigned to this job. If multiple processes push the job into one
buffer, the buffer will have multiple producers. In this case, some processes have two buffers,
besides the input buffer. They also have an output buffer. The new jobs are not pushed into
the input buffer in the next pipe, instead, the new jobs are saved in the output buffer of the
current processes, and the process from the next pipe will collect the buffer from the previous
pipe. A buffer working example is shown in Figure 67. In the example, after Processes B1

and B2 finish their job, and want to shift the job to next pipe, they will put it in their output

89

buffer. And Process C1 will continue to check and collect the jobs in the output buffers of Bl

and B2. Then the circular buffer can be used in this system.

Read

Process
A1

Figure 67: One processor collects (reads) data from multiple buffers.

Buffers Buffers Buffers Packets Inspection Buffers
. Reassembled
Decode —» Preprocessors r Detection Detection
0) 2%
2% 13% 76% 7%

Thread Pool

process >
process @

€
€

!
OP

1
0ad

E@ <& !
process

process > process,

process rocess

P00
LIL
d

Figure 68: The pipeline process of Snort with multiple processes. All inspections are in one pipe and the
outputs are in a different pipe.

In the network environment, if Snort outputs the alert to a remote server, such as an SQL
server and the server stops working or loses response, Snort will also slow down or hang up
because its output plugin will continue to search the remote server and try to send out the
alert. Therefore, another option of the pipeline is separating the output module from the

inspection process. A structure is shown in Figure 68.

90

6.4 Measurement on the parallel system

On the sequence program, a new incoming packet will be read and processed when the
processing on the previous packet has been finished. It is easy to measure the processing
performance by counting the number of coming packets (Npacket) and the time required by
Snort to process these packets (t). The throughput (Tp) can be calculated by Equation 2.

_ npacket

T
p t

Equation 2

And an average processing time (Taye) for a single packet can be calculated by Equation 3.

t

Tave n

Equation 3

In a parallel processing system, the measurement of instant performance is complicated for the

following reasons:

Packet Waiting
processing time time
Process 1 ‘ ‘ ‘ ‘ ‘ ‘
Process 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Process 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Process 4 ‘ ‘ ‘ ‘ ‘ ‘

Figure 69: The processing time and waiting time in a simple parallelized system.

(1) The processing time for different packets is different. Even for a totally parallelized

system, it is hard to count accurately the number of packets that have been processed.

91

Most of the time, part of a packet has been processed, but not a whole packet. Figure

69 shows a processing example on a simple parallelized system.

(2) The waiting time is different for different packets and different processes.
Furthermore, the waiting time can be affected for different reasons, such as memory
loading delay, PCAP capture delay, and the no-job delay (There are no jobs for a
process, which can be caused by no traffic coming into the network adapters in a run

time inspection, and the previous section not having done its job in a pipeline system).

(3) In a buffered pipeline system, each buffer may contain some packets, which have
been done by some sections of the pipeline, but not by the whole process. An example

of the buffer pipeline system is shown in Figure 70.

Buffer 1 Buffer 2

Process 1 Q Q Q Process 2 Q Q Q Process 3
000

Figure 70: An example of a buffer pipeline system.

(4) Who is going to count and collect the counter information? In a parallel processing
system, the message transmission and synchronization require extra time. Owing to
the complexity of the counter calculation, the calculation also needs some CPU load if

a periodic statistic is required. And the output of the statistic requires more time.

Compared with the sequence program, a parallel processing will have some different
calculation formulas. Firstly, for a single packet, the total throughput does not equal the
reciprocal of average packet processing time. For example, both throughput and packet

processing time are larger than the sequence program.

92

Equation 4

Secondly, the total throughput does not directly equal the throughput on a single process

multiplied by the total number of processes.

Tptotal * Tpsingle process X nprocess

Equation 5

To simplify the issue, a measurement with an acceptable accuracy can be carried out in the

following way:

(1) In the pipeline system, the packet counting will be carried out on each individual
section. Only count the incoming and outgoing packets and use the timestamp in the
PCAP header to calculate the throughput. The counter variable can be stored in their
local shared memory or a global shared memory. Equation 2 can be used by each
individual process for its own calculation. The total throughput can be assumed to be

the sum of each parallel limb.

(2) Choose a suitable sample time, e.g. 1 second, to increase counting accuracy.

(3) Use a separate process to organise the working processes, the calculation, and the

output of the packet statistic periodically.

(4) Record the CPU usage for each individual core with the packet statistic.

(5) Record the buffer usage periodically.

93

In the periodic output, the packet processing has to be read with the related CPU core usage.
When the CPU is not 100% used by the working core, it means that it spends some time
waiting for a new job, and the previous sections require more computing power. The PCAP
speed only indicates the PCAP capture speed, if the CPU core running PCAP is not 100%
used. It means that the current traffic does not reach the maximum PCAP traffic allowed by
the current hardware. This may be caused by either the hardware speed of network adapters or

software traffic provided by the clients and services programs.

Generally, the packet throughput measured by each individual process indicates the average

throughput in the sample period.

An overall inspection speed is decided by the slowest pipeline section, and also has a similar

result to the PCAP speed.

6.5 Test of the Pipelined Snort

An Intel 17 system has been used for the tests. The computer has two CPU sockets and the
CPU is Intel Xeon E5520, 4 cores with 2.26 GHz running frequency with hyper-thread
enabled. The CPU has two 128 KB L1 caches; one 1MB L2 cache; and one 8MB L3 cache.
The system has eight banks of 2GB DDR3 1067 MHz memory. The processor has a 5.86
GT/s memory accessing speed. The system has in total 16 threads and the Linux system

BogoMips is 4533 for each thread.

The computer has a Linux 2.6.31-20-generic x64 operation system. All programming has

been carried out in “C” programming language.

In the tests, multiple processes are created by “fork()”, and bind with different physical
processors by CPU affinity. The test processes are set with a higher priority to reduce the

effect from other programs.

94

Fom e [Rule Port Counts]-------——--———-———-

| tcp udp icmp ip
| src 801 9 0 0]
| dst 5688 390 0 0
| any 180 115 39 11
| nc 16 7 14 8
| s+d 3 3 0 0

[Port Based Pattern Matching Memory]
+-[AC-BNFA Search Info Summary]-------—-—--——-——--—-——————————

| Instances - 245

| Patterns - 44861

| Pattern Chars - 425552

| Num States : 138663

| Num Match States : 17236

| Memory : 6.76Mbytes
| Patterns : 2.12M

| Match Lists : 2_.75M

| Transitions : 1_80M

Figure 71: Snort rules set used for the tests.
All tests use the default pattern matching algorithm “AC-BNFA”. In the tests, Snort uses a
rule set “snortrules-snapshot-2.8.tar.gz” which is a free Sourcefire VRT certified rule set
released in July 2008 by Snort. There are 7226 rules (OTN) in this rule set linked into 259
chain headers (RTN). Detailed information about this rule set is shown in Figure 71.The
computer has an Intel 82598EB 10 GbE card, and the card is connected by a PCIE v2.0
interface. However, it is hard to generate a 10 Gb traffic by a software as there is a very high
load on processors when the traffic is bigger than a few hundred Mbps. Therefore, a pre-
captured pcap file is used for the tests. The pcap file is captured by “Tshark” and saved in a
memory drive for fast reading. The captured packets include some general network activities,

such as web browsing, emails, FTP, ntp, p2p, file copy in the local network and so on.

The performance of pattern inspection may be influenced by many different factors, such as
the CPU usage of other programs, rule set, test packets, or the memory usage. All results in
this chapter are an average value of a few tests. Although it is an approximate value, it can

still give a performance level of different implementation.

95

(e}
o
o

750

3
!
|
|
\

o
o

=== |ntel

Speed (Mbps)
a O N
u
o

550

]
o
o

0 2000 4000 6000 8000
Packet Size (Bytes)

Figure 72: The inspection speed of original sequential Snort on the Intel computer.
All the following tests will use the original sequential Snort v2.8.5 as a reference and all
modified versions of Snort are based on version 2.8.5. All test results from different versions
of Snort are collected in the same environment and with the same data and rule set. A
performance chart for the baseline sequential Snort on the Intel computer is shown in Figure
72. The test result shows that the original official sequential Snort has almost the same

inspection speed for different sized packets.

Buffers Buffers Packets Inspection
Decode >ﬁ Preprocessors >ﬁ Detection
0, 0,
2% H 13% H 83% 2%

Thread Pool

|

Figure 73: Snort test structure S01 (1+1+1+4).
With a pipeline implement shown in Figure 73, there are four pipes in the pipeline, only one
process in the PCAP, decoder, and pre-processor, and four processes in the packet inspection
module. An overall performance chart comparing it with the original official Snort is shown

in Figure 74.

96

Figure 74 shows that the performance increases exponentially when the size of the packet

increases. The inspection speed is very low when the packet has a length of less than 3000

bytes. It may be caused by a small granularity of the packets. With the small granularity,

most time is spent on the packet copy, overhead data transfer, and memory operation

initialization. When the size of the packet is bigger than 3000 bytes, it only has a slightly

higher inspection speed than the original Snort. It looks as if the system reaches a bottle neck.

In the testing, a 32768 packets data buffer and a 2048 packets address buffer are allocated. An

average of a 20000 packets data buffer is used and the address buffer is almost 0 most times,

which means when a new packet comes into the pipeline, it will be processed immediately.

The bottleneck is not at the decoder, pre-processor, or packet inspection session.

==4==Snort-original @ Intel

Speed (Mbps)

Snort SO1(1+1+1+4)

0 1000 2000 3000 4000 5000

Packet Size (Bytes)

6000 7000

8000 9000

Figure 74: The inspection speed of Snort S01 (1+1+1+4).

Buffers

Decode

Preprocessors

Buffers

E

Packets Inspection

Detection

2%

13%

E

83%

2%

Thread Pool

rocess

Figure 75: Snort test structure S02 (1+1+3).

97

A reduced stage of the pipeline showing in Figure 75 combines the decoder and pro-processor

sections together and there is an overall packet inspection performance showing in Figure 76.

It has very similar performance to the previous pipeline showing in Figure 73. It looks as if

the system has a memory bandwidth limitation.

900
800 — - 2
700 | /;;z/ — ——
» 600
g V4 g
S 500 y A Snort-original @ Intel——
- A
@ 400 F —B—Snort 502(1+1+3)
Q |
@ 300

Snort S01(1+1+1+4)

0 1000 2000 3000 4000 5000 6000 7000
Packet Size (Bytes)

8000 9000

Figure 76: The inspection speed of Snort S02 (1+1+3)

Figure 77 shows the number of processes reduced to 2. A comparison performance chart is

shown in Figure78. The figure shows that it has a better performance when the packet size is

between 3000 bytes and 6000 bytes. The consuming data packet buffer is still at the same

level; and the address packet buffer still keeps at a very low level most of the time, but

reaches the maximum 2048 packets sometimes.

2%

Buffers Buffers Packets Inspection
Decode Preprocessors ~ﬂ Detection
0,
2% 13% H 83%

Thread Pool

rocess

Figure 77: Snort test structure S02 (1+1+2).

98

1000
000 M
800 = =k 2 o A
_ P T e R e)
~ 700 |
Q
.Eo 600 ===Snort-original @ Intel
;&: 500 \{ ' —>=Snort S03(1+1+2)
g 400 T —@—Snort S02(1+1+3)
s 300 — Snort SO1(1+1+1+4
+1+1+
200 _\J nor ()
100 =
0
0 1000 2000 3000 4000 6000 7000 8000 9000
Packet Size (Bytes)

Figure 78: The inspection speed of Snort S02 (1+1+2)

6.6 PCAP Capture Buffer

Figure 78 can confirm that the performance limitation is the memory bandwidth. In the
pipelined Snort, because an incoming packet needs to be accessed by multiple different
processes, all packets need be buffered. The LibPCAP is only designed for single sequential
processes. It can capture a single packet each time. The captured packet will be copied from
the OS socket to a single packet buffer allocated by LibPCAP. Snort has to copy the packet
from the single packet buffer into its own multiple packet data circular buffer. A schematic is

shown in Figure 79.The two memory copy processes by two separate programs waste some

time and memory bandwidth.

Co-

Network

Card

Card
Driver

Hardware

Socket

LibPCAP

memcpy|

s\ Buffer

Snort

memcpy /\

Kernel Space

User Space

Figure 79: Packet buffer schematic of LibPCAP.

99

A solution to the above issue is combining these two packet buffers in LibPCAP and external
programs into one buffer location. The packet buffer can be defined and allocated by the
external program, such as Snort. When Snort calls LibPCAP to capture a packet, it can pass
the buffer address to it. Then LibPCAP can copy the packet data and save its header into the

received address from Snort directly. A schematic is shown in Figure 80.

LibPCAP < Snort
sent thie buffer /
locgtion [\
(packets Network Cérd 1
Card Driver

| |
\m\ .
Socket e \‘\\ //

Hardware | Kernel Space | User Space

Figure 80: An external packet buffer schematic of LibPCAP.
In the implementation, some extra functions are added to the existing LibPCAP. A list of

primary functions is shown in Figure 81.

<pcap.c=>:
/% main function can be called externally to capture a single packet by LibPCAP
pcap t *p: pcap handler
struct pcap pkthdr *pkt header: the address of packet header allocated externally.
const u char s*pkt data: the address of packet data allocated externally. */
int pcap next exbuf (pcap t *p, struct pcap pkthdr *pkt header, const u char #*#pkt data);

<pcap-linux.c>:
/% Initial packet capture parameters in Linux system for external buffer*/
pcap t * pcap_create exbuf (const char *device, char *ebuf);
/% Capture a packet in Linux system, and save it to the external buffer*/
static int pcap read packet exbuf (pcap t *handle, pcap handler callback, u char *userdata)
{
packet len = recvfrom(handle->fd, bp + offset, handle->bufsize — offset,
MSG_TRUNC, (struct sockaddr *) &from, &fromlen);

<saveTfile.c>:
/* Read a packet from a file, and save it to the external bufferk/
int pcap offline read exbuf (pcap t *p, int cnt, pcap handler callback, u char *user)

{

status = sf _next packet(p, h, p—>buffer, p—>bufsize);

Figure 81: A list of primary functions for the external buffer in LibPCAP.

100

6.7 Test of LibPCAP external Buffer

With implementation and using the external buffer feature on LibPCAP, the same tests in
section 6.5 have been carried out again. The comparisons of the overall packet inspection are

shown from Figure 82 to Figure 84.

1000
900
800
= 700
£ 600
2 500 —
T 200 ==¢==Snort-original @ Intel
:'-,. 300 =e=Snort S11(1+1+1+4) (external Buffer)
100
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Packet Size (Bytes)
Figure 82: The inspection speed of Snort S11 (1+1+1+4).
1200
1000
2 800
s
g 600
é’- 400 ==¢==Snort-original @ Intel
“ = Snort $12(1+1+3) (external Buffer)
200
==fe=Snort S02(1+1+3)
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Packet Size (Bytes)
Figure 83: The inspection speed of Snort S12 (1+1+3)
1200
1000 /’\
g a0 @
s
= 600
3 -
;:-,_ 400 == Snort-original @ Intel
500 =>é=Snort S13(1+1+2) (external Buffer)
=fi=Snort S03(1+1+2)
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Packet Size (Bytes)

Figure 84: The inspection speed of Snort S12 (1+1+2)

101

1200

1000

800

600

==4==Snort-original @ Intel

400 f& ==é=Snort $13(1+1+2) (external Buffer)

Speed (Mbps)

200 === Snort S12(1+1+3) (external Buffer)

Snort S11(1+1+1+4) (external Buffer)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Packet Size (Bytes)

Figure 85: The inspection performance comparison using an external buffer in LibPCAP.

The above figures show that the overall performance of the packet inspection is improved
when the size of packet is bigger than 2000 bytes by using an external buffer in LipPCAP.
However, the performance does not change much when the size of the packet is below 2000
bytes or bigger than 8000 bytes. The performance is still confined to the memory bandwidth.
A relatively shorter length of the pipeline and fewer processes can provide a better
performance. The pipeline 1-1-2 can provide a maximum of about a 60% better performance
than the original sequential Snort. With a bigger memory bandwidth, the performance of the

pipeline should be able to increase greatly.

6.8 Results Review

Intel officially released a performance report on a multi-thread Snort in 2008. [68] In the
report, Intel chose a similar packet pipeline and flow-pinning software architecture based on
Snort 2.8.0.1. The main difference is that Intel implemented the structure by multi-thread; and
the above Snort modules are implemented by multi processes with shared memory. Also,
Intel only released the test result based on a 1 + 3 two-stage pipeline; the above tests are
based on at least a three-stage pipeline. Intel provided test results for both offline (directly

reading packets from the hard drive) and online and a real traffic online performance test had

102

been done by a hardware packet generator. However, owing to the limitation of the device,

only offline tests are provided in the above tests.

4 140%)
120%
100%
2
'E 80%
)
< 60%
<
40%
20%
0%
Original sequential Intel two-stage Three-stage pipeline Three-stage pipeline
Snort pipeline Snort Snort in Figure 75 Snort with new PCAP
L module in section 6.6

Figure 86: Snort 2.8.x offline test performance result for a 32KB packet.

Intel’s pipeline module is very similar to the module shown in Figure 75. The result of the
32kB offline test matches the result shown in Figure 76. At the end of Intel’s report, it
declared that the bottleneck was on the packet capture library. The above Section 6.6 provides
a new improvement on the PCAP module, which avoids another memory copy caused by the
packet capture module. Figure 83 in Section 6.7 shows that the modified Snort with the
external buffer PCAP module has a 30% better performance at the 32kB packet data. A

performance comparison chart is shown in Figure 86.

In the above tests, all small packets with a size less than 1kB have a similar process speed in
the number of packet per second (PPS). It is because these packets have a big overhead on the
memory. The work load of different processes shows that all processes are waiting for
“recvfrom” function in the Linux kernel, which is the new bottleneck of the system. The main
job of the “recvfrom” function is reading packets between different computer hardware
devices, and it contains some memory operations. Therefore, the bottleneck on the hardware

is the bandwidth of the memory and bus.

103

6.9 Summary

Currently, the speed of the CPU is already very fast. In the multiple processors system, the
bottleneck of the overall system performance moved from the CPU frequency to data

acquisition speed, such as memory, cache and bus speed and bandwidth.

On a general purpose computer, normal packets with a size of less than 2000 bytes or bigger
than 8000 bytes are unsuitable for packet level pipeline parallelization. A jumbo frame with a
size between 2000 bytes and 8000 bytes can be parallelized in the packet level by a pipeline

with a maximum of 60% performance improvement over the original Snort.

In addition, the external buffer feature of LibPCAP should also be used for packet level
parallelization in other applications. It leaves the packet buffer in the user space, and the
external program will have full control to access the buffer. If the memory bandwidth is

allowed, it will be possible to perform parallelization in different ways.

At this point, there has been only a small amount of research into Snort parallelization on the
general purpose processor. Most research has been performed on the FPGA or a special
network processor. From the reported result, the overall performance of Snort on the FPGA

and the network processor is better than on the general purpose computer.

104

V. CONCLUSION

7 Conclusion

The main focus of this thesis is on some possible parallelization methods of the NIDS system
in the general computer environment. The study is based on a famous open source NIDS
system — Snort. The thesis has analyzed the structure and working mechanism of Snort and its
packet capture API LibPCAP at code level. It then focused on the highest work load module
in Snort — the pattern matching system, an overall pipeline structure of Snort, and a

modification of LibPCAP.

For the pattern matching engine, some existing single and multiple pattern matching
algorithms have been analyzed. Two parallelized pattern matching algorithms, the Reversed
Bit-Parallelism algorithm and the Parallelized Aho-Corasick algorithm, have been designed
and implemented. However, owing to the small granularity of the network packets, the pattern

matching engine of Snort is unsuitable for parallelization.

In the overall function module level, a pipeline structure of Snort can be used to perform
parallelization on a multi-core machine. In the pipeline system, all incoming packets are
stored in a “data” circular buffer which can be accessed by all processes. To reduce the
multiple memory copy from the operation system kernel socket to the packet buffer in the
Snort, an external buffer packet capture feature has been added to LibPCAP. The inter-
processes communication system in the pipeline has been carried out by shared memory.
Both processes in the pipeline are connected by an “address” circular buffer. A very small
message which contains the address of the packet in the data circular buffer will be passed in

the middle of the pipeline between processes. The whole system can provide a maximum of

105

40% - 60% performance improvement over the official Snort system for jumbo frames on an
Intel 17 computer. Unfortunately, the original sequential Snort still has a better performance
for the packet with a size of less than 2000 bytes. Owing to the limited memory bandwidth, a
big pipeline system does not help Snort to improve its performance, On an Intel 17 system,
one processor for PCAP, one processor for the decoder and preprocessor and two processes
for the inspection module give a better performance. More processes in the pipeline will

introduce more overhead into the system.

At this point, Snort parallelization on FPGA still provides the best performance. The general
purpose processor has the best flexibility and if the memory bandwidth can be increased in

the future, it will also be a good option.

106

& Future Work

In the tests, the “address” circular buffer usage keeps at a very low level most of the time,
which means the PCAP may be the slowest part in the pipeline. The external packet buffer
feature only gives the sequential LibPCAP the ability to support a multiple threads multiple
processes user space program. Therefore, some more research can be carried out on the

parallelization of LibPCAP to support multiple threads multiple processes natively.

In addition, another possible change to the LibPCAP is adding a packet classification feature.
Chapter 4 of this thesis shows that the BSD Packet Filter is the kernel of the LibPCAP. It has
a very fast speed to filter the traffic. A high speed packet classification feature would be easy

to add on top of the BSD Packet Filter.

TCP protocol works on a session base and all packets in the same stream have an order
dependency. Snort has a stream plugin in the pre-processors. A packet classification
performing after the pre-processor session does not require handling of the packet stream
issue. If a packet classification is to be carried out before the pre-processor of Snort, such as

in the LibPCAP, a classification method needs to be designed.

Finally, there will be more potential to perform deep packet inspection parallelization with

multiple sensors, in the network area.

107

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

9 References

Rebecca Copeland, “Clark School Study: Hackers Attack Computers Every 39
Seconds”. 2007

Martin Roesch, Official Snort website, http://www.snort.org.

Anant Agarwal and Markus Levy, "Going multicore presents challenges and
opportunities", 2007

Paul Teich, "Multi-Core Processor Technology: Maximizing CPU Performance in a
Power Constrained World", AMD.

Henriok, “A schematic overview of the Blue Gene/L supercomputer”,
http://en.wikipedia.org/wiki/File:BlueGeneL. schema.png

Henriok, “Schema ASIC Blue Gene/L”,
http://en.wikipedia.org/wiki/File:Blue Gene L ASIC.png

Anant Agarwal, Markus Levy, "The KILL Rule for Multicore", DAC 07
Proceedings of the 44th Annual Design Automation Conference (2007), ACM, 2007

“International standard ISO OSI model”, http://en.wikipedia.org/wiki/OSI model

D. L. Schuff and V. S. Pai, "Design Alternatives for a High-Performance Self-
Securing Ethernet Network Interface," 2007 IEEE.

“MAC layer PDU becomes physical layer SDU”,
http://en.wikipedia.org/wiki/Protocol data unit

Neil Matthew, Richard Stones. (2007). "Beginning Linux Programming". Wiley
Publishing, Inc.

Herlihy, Maurice; Moss, J. Eliot B. (1993). "Transactional memory: Architectural
support for lock-free data structures". The 20th International Symposium on
Computer Architecture (ISCA).

Morry Katz, "PARATRAN: A transparent transaction based runtime mechanism for
parallel execution of Scheme", MIT LCS, 1989

Nir Shavit and Dan Touitou. "Software Transactional Memory". The 14th ACM
Symposium on Principles of Distributed Computing, August 1995.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer II1.
"Software Transactional Memory for Dynamic-Sized Data Structures". the Twenty-
Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). July 2003.

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, “Parallel
Programming in OpenMP”. Morgan Kaufmann, 2000.

108

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Huang, Z.; Sun, C.; Cranefield, S.; Purvis, M."View-based consistency and its
implementation", Cluster Computing and the Grid, 2001.

Z. Huang, W. Chen, “Revisit of View-Oriented Parallel Programming”. Seventh
IEEE International Symposium on Cluster Computing and the Grid, 2007.

Zhiyi Huang, Chengzheng Sun, Stephen Cranefield, and Martin Purvis, View-based
Consistency and its Implementation, in Proceedings of the 1st IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2001),
pp.74-81, IEEE Computer Society, Brisbane, May 2001.

Huang, Z.; Purvis, M.; Werstein, P. "Performance Comparison between VOPP and
MPI", Parallel and Distributed Computing, Applications and Technologies, 2005.
PDCAT 2005.

Huang, Z.; Purvis, M.; Werstein, P. "Performance evaluation of view-oriented
parallel programming", Parallel Processing, 2005. ICPP 2005.

Huang, Z., Purvis M., and Werstein P., Performance Evaluation of View Oriented
Parallel Programming. In Proc. of the IEEE International Conference on Parallel
Processing (ICPP05), pp251-258, IEEE Computer Society (2005), Oslo.

Huang, Z., Chen, W., Purvis, M., Zheng, W., and Werstein, P., VODCA: View-
Oriented, Distributed, Cluster-Based Approach to Parallel Computing, International
Transactions on Systems Science and Applications, ISSN 1751-1461, Vol. 2, No 4,
pp. 333-345, Feb 2007

Zhang, J., Huang, Z., Chen, W., Huang, Q., Zheng, W., Maotai: View-Oriented
Parallel Programming on CMT processors, in Proceedings of the 37th International
Conference on Parallel Processing (ICPP0S8), IEEE Computer Society (2008),
Portland, Oregon, USA.

Leung, K.C., Huang, Z., Huang, Q., Werstein, P., Maotai 2.0: Data Race Prevention
in View-Oriented Parallel Programming. In Proceedings of the Tenth International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT 2009). pp., IEEE Computer Society (2009), Japan.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. "Cilk: An Efficient Multithreaded
Runtime System", Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 207-216, 1995.

Todd Brian, “Putting multicore processing in context”. EETimes Design, 2006

Amdahl, Gene . "Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities" AFIPS Conference Proceedings (30), 1967.

Gonzalo Navarro, Mathieu Raffinot, "Flexible Pattern Matching in Strings: Practical

On-line Search Algorithms for Texts and Biological Sequences", Cambridge
University Press, 2002

109

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Ricardo Baeza-Yates, “Approximate String Matching”, Center for Web Research,
www.cwr.cl ,Depto. de Ciencias de la Computacion, Universidad de Chile,
Santiago, CHILE

Christian Charras, Thierry Lecroq, “Handbook of Exact String-Matching”, College
Publications

R.M. KARP, M.O. RABIN, "Efficient randomized pattern-matching algorithms",
IBM J. Res. Dev, 1987

Jeffrey E. F. Friedl, "Mastering Regular Expressions, 3rd Edition", O'Reilly, August
2006.

D.E. Knuth, J.H Morris., V.R. Pratt, 1977, Fast pattern matching in strings, SIAM
Journal on Computing

Robert S. Boyer, J Strother Moore, "A fast string searching algorithm",
Communications of the ACM, October 1977, Volume 20, Number 10

R.N. Horspool, 1980, "Practical fast searching in strings, Software - Practice &
Experience"

C. Allauzen, M. Crochemore, and M. Raftinot. "Efficient experimental string
matching by weak factor recognition". In Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching.

Ricardo Baeza-Yates and Gaston H. Gonnet, "A new approach to text searching",
Communications of the ACM, October 1992/%1.35, No.10

Alfred V. Aho, Margaret J. Corasick, "Efficient string matching - An aid to
bibliographic search", Communications of the ACM, October 1975, Volume 18,
Number 6

S. Wu and U. Manber. "A fast algorithm for multi-pattern searching", Report TR-
94-17, Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

C. Allauzen and M. Raffinot. "Factor oracle of a set of words", Institut Gaspard-
Monge, Université de Marne-la-Vallée, 1999.

Alam, M.S.; Javed, Q.; Akbar, M.; Rehman, M.R.U.; Anwer, M.B. “Adaptive load
balancing architecture for SNORT”, Networking and Communication Conference,
2004. INCC 2004.

Botwicz, J.; Buciak, P.; Sapiecha, P. “Building Dependable Intrusion Prevention
Systems”, Dependability of Computer Systems, 2006

Lih-Chyau Wuu, Sout-Fong Chen, "Building intrusion pattern miner for snort
network intrusion detection system", IEEE 37th Annual 2003 International
Carnahan Conference on Security Technology, 2003.

110

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Dharmapurikar, S.; Lockwood, J.W. "Fast and Scalable Pattern Matching for
Network Intrusion Detection Systems", Selected Areas in Communications, IEEE
Journal on Volume: 24 , Issue: 10, 2006

H. Liu. "Efficient Mapping of Range Classifier into Ternary CAM". In IEEE
Symposium on High Performance Interconnects, Stanford, CA, August 2002.

H. Song and J.W. Lockwood. Efficient Packet Classification for Network Intrusion
Detection using FPGA. In ACM International Symposium on FPGAs,Monterey,
CA, February2005.

E. Spitznagel, D. Taylor, and J. Turner. Packet Classification using Extended
TCAMSs. In IEEE International Conference on Network Protocols. IEEE, 2003.

R. Franklin, D. Carver, and B. L. Hutchings. "Assisting Net-work Intrusion
Detection with Reconfigurable Hardware". In IEEE Symposium on Field-
programmable Custom Computing Machines, Napa Valley, CA, April 2002. IEEE.

R. Sidhu and V. K. Prasanna. "Fast Regular Expression Matching using FPGAs". In
IEEE Symposium on Field Programmable Custom Computing Machines, Napa
Valley, CA, April 2001. IEEE.

Y. H. Cho and W. H. Mangione-Smith. Deep Packet Filter with Dedicated Logic
and Read Only Memories. In IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 2004. IEEE.

Y. H. Cho and W. H.Mangione-Smith. Programmable Hardware for Deep Packet
Filtering on a Large Signature Set. In First IBM Watson P=ac2 Conference,
Yorktown, NY, October 2004. IBM.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep Packet
Inspection using Parallel Bloom Filters. In IEEE Hot Interconnects 12, Stanford,
CA, August 2003. IEEE Computer Society Press.

Papadopoulos, G.; Pnevmatikatos, D. "Hashing + memory = low cost, exact pattern
matching". Field Programmable Logic and Applications, 2005.

Weinsberg, Y.; Tzur-David, S.; Dolev, D.; Anker, T. "High performance string
matching algorithm for a network intrusion prevention system (NIPS)". High
Performance Switching and Routing Workshop, 2006

Zhuojun Zhuang; Yuan Luo; Minglu Li; Chuliang Weng. "A Resource Scheduling
Strategy for Intrusion Detection on Multi-core Platform". Network and Parallel
Computing, 2008.

Piyachon, P.; Yan Luo. "Efficient memory utilization on network processors for
deep packet inspection". Architecture for Networking and Communications
systems, 2006

Lin Tan; Sherwood, T. "A high throughput string matching architecture for intrusion
detection and prevention". Computer Architecture, 2005.

111

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Sourour, M.; Adel, B.; Tarek, A. "A Stateful Real Time Intrusion Detection System
for high-speed network", Advanced Information Networking and Applications,
2007.

2

A. F. Arboleda and C. E. Bedon, “Snort diagrams for developers, Version 0.2 alpha
Universidad del Cauca — Colombia, 14th April 2005

The official web site of LibPCAP. “http://www.tcpdump.org”.

Luis MartinGarcia, "Programming with Libpcap - Sniffing the network from our
own application". Hakin9 Magazine. Issue 2/2008

Cisco Systems, “Building Scalable Cusco Internetworks”, Volume 1 Version 3.0,
Cisco Systems, 2006

Rebecca Bace and Peter Mell, “Intrusion Detection Systems”, NIST Special
Publication, 16 August 2001. http://csrc.nist.gov.

Nen-Fu Huang, Chih-Hao Chen, Rong-Tai Liu, Chia-Nan Kao, and Chih-Chiang
Wu, “On the design of a cost effective network security switch architecture”, Global
Telecommunications Conference, 2005. GLOBECOM '05. IEEE.

Nen-Fu Huang, Chih-Hao Chen, Yang-Fang Huang, Yi-Hsuan Feng, Chia-Nan
Kao, Hsien-Wei Hung, and Ming-Chang Shih, "A Scalable Architecture for High
Available Security Switches", Communications, 2006. ICC '06. IEEE.

Young H. Cho and William H. Mangione-Smith, "Deep Network Packet Filter
Design for Reconfigurable Devices." ACM Transactions on Embedded Computing
Systems (ACM TECS), 2007.

Intel Corp., "Removing System Bottlenecks in Multi-threaded Applications." Intel
Application Note, Order Number: 320631-001US, Sep 2008.

112

	hzh23_ME_thesis_cover
	hzh23_20111122

