837 research outputs found

    Entanglement at the boundary of spin chains near a quantum critical point and in systems with boundary critical points

    Full text link
    We analyze the entanglement properties of spins (qubits) attached to the boundary of spin chains near quantum critical points, or to dissipative environments, near a boundary critical point, such as Kondo-like systems or the dissipative two level system. In the first case, we show that the properties of the entanglement are significantly different from those for bulk spins. The influence of the proximity to a transition is less marked at the boundary. In the second case, our results indicate that the entanglement changes abruptly at the point where coherent quantum oscillations cease to exist. The phase transition modifies significantly less the entanglement.Comment: 5 pages, 4 figure

    Flow equations for Hamiltonians: Contrasting different approaches by using a numerically solvable model

    Full text link
    To contrast different generators for flow equations for Hamiltonians and to discuss the dependence of physical quantities on unitarily equivalent, but effectively different initial Hamiltonians, a numerically solvable model is considered which is structurally similar to impurity models. By this we discuss the question of optimization for the first time. A general truncation scheme is established that produces good results for the Hamiltonian flow as well as for the operator flow. Nevertheless, it is also pointed out that a systematic and feasible scheme for the operator flow on the operator level is missing. For this, an explicit analysis of the operator flow is given for the first time. We observe that truncation of the series of the observable flow after the linear or bilinear terms does not yield satisfactory results for the entire parameter regime as - especially close to resonances - even high orders of the exact series expansion carry considerable weight.Comment: 25 pages, 10 figure

    Tomonaga-Luttinger model with an impurity for a weak two-body interaction

    Full text link
    The Tomonaga-Luttinger model with impurity is studied by means of flow equations for Hamiltonians. The system is formulated within collective density fluctuations but no use of the bosonization formula is made. The truncation scheme includes operators consisting of up to four fermion operators and is valid for small electron-electron interactions. In this regime, the exact expression for the anomalous dimension is recovered. Furthermore, we verify the phase diagram of Kane and Fisher also for intermediate impurity strength. The approach can be extended to more general one-body potentials.Comment: 10 pages, 1 figur

    Plasmons in layered structures including graphene

    Full text link
    We investigate the optical properties of layered structures with graphene at the interface for arbitrary linear polarization at finite temperature including full retardation by working in the Weyl gauge. As a special case, we obtain the full response and the related dielectric function of a layered structure with two interfaces. We apply our results to discuss the longitudinal plasmon spectrum of several single and double layer devices such as systems with finite and zero electronic densities. We further show that a nonhomogeneous dielectric background can shift the relative weight of the in-phase and out-of-phase mode and discuss how the plasmonic mode of the upper layer can be tuned into an acoustic mode with specific sound velocity.Comment: 18 pages, 6 figure

    Expression and regulation of caudal in the lower cyclorrhaphan fly Megaselia

    Get PDF
    The homeobox gene caudal (cad) regulates posterior development in Drosophila. In early embryos, the cad protein (CAD) is expressed in a posterior-to-anterior concentration gradient, which contributes polarity to the developing embryo. The CAD gradient is complementary to and dependent on the anterior pattern organizer Bicoid (BCD), which represses the translation of ubiquitous maternal cad transcripts in the anterior embryo through a direct interaction with the cad 3′ untranslated region (UTR). Here, we show that early embryos of the lower cyclorrhaphan fly Megaselia express the putative cad orthologue Mab-cad throughout the posterior three quarters of the blastoderm but lack maternal transcripts. In transgenic blastoderm embryos of Drosophila, Mab-cad cis-regulatory DNA drives the expression of a reporter gene in a similar pattern, while Mab-cad 3′ UTR fails to mediate translational repression of a ubiquitously transcribed reporter. For another lower cyclorrhaphan fly (Lonchoptera) and two related outgroup taxa of Cyclorrhapha (Empis, Haematopota), we report maternal cad expression in ovarian follicles. Together, our results suggest that BCD is not required for the translational repression of Mab-cad, and that maternal cad expression was lost in the Megaselia lineage

    Lattice Green's function approach to the solution of the spectrum of an array of quantum dots and its linear conductance

    Full text link
    In this paper we derive general relations for the band-structure of an array of quantum dots and compute its transport properties when connected to two perfect leads. The exact lattice Green's functions for the perfect array and with an attached adatom are derived. The expressions for the linear conductance for the perfect array as well as for the array with a defect are presented. The calculations are illustrated for a dot made of three atoms. The results derived here are also the starting point to include the effect of electron-electron and electron-phonon interactions on the transport properties of quantum dot arrays. Different derivations of the exact lattice Green's functions are discussed

    Models of electron transport in single layer graphene

    Full text link
    The main features of the conductivity of doped single layer graphene are analyzed, and models for different scattering mechanisms are presented.Comment: 15 pages. Submitted to the Proceedings of the ULTI symposium on Quantum Phenomena and Devices at Low Temperatures, Espoo, Finland, to be published in the Journ. of Low. Temp. Phy

    Frequency splitting of intervalley phonons in graphene

    Full text link
    We study the thermal distribution of intervalley phonons in a graphene sheet. These phonons have two components with the same frequency. The degeneracy of the two modes is preserved by weak electron-phonon coupling. A sufficiently strong electron-phonon coupling, however, can result in a splitting into an optical and an acoustic phonon branch, which creates a fluctuating gap in the electronic spectrum. We describe these effects by treating the phonon distribution within a saddle-point approximation. Fluctuations around the saddle point indicate a Berezinskii-Kosterlitz-Thouless transition of the acoustic branch. This transition might be observable in the polarization of Raman scattered light.Comment: 5 pages, 1 figur

    Excitonic Effects on Optical Absorption Spectra of Doped Graphene

    Full text link
    We have performed first-principles calculations to study optical absorption spectra of doped graphene with many-electron effects included. Both self-energy corrections and electron-hole interactions are reduced due to the enhanced screening in doped graphene. However, self-energy corrections and excitonic effects nearly cancel each other, making the prominent optical absorption peak fixed around 4.5 eV under different doping conditions. On the other hand, an unexpected increase of the optical absorbance is observed within the infrared and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a combining effect from the band filling and electron-hole interactions results in such an enhanced excitonic effect on the optical absorption. These unique variations of the optical absorption of doped graphene are of importance to understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011
    corecore