3,246 research outputs found
Airborne Doppler radar for wind shear detection
There has been extensive discussion concerning the use of ground based Doppler radars for the detection and measurement of microburst features and the mapping of associated wind shears. Recent and planned research at Langley into technology and techniques useful for the future development of airborne Doppler weather radar systems for both turbulence and wind shear detection are addressed. Such systems, if successfully developed, would represent a marked increase in performance over airborne weather radars currently available. A principal difficulty in extending to airborne radars the capabilities of current ground based Doppler radars is emphasized
Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory
We describe categorical models of a circuit-based (quantum) functional
programming language. We show that enriched categories play a crucial role.
Following earlier work on QWire by Paykin et al., we consider both a simple
first-order linear language for circuits, and a more powerful host language,
such that the circuit language is embedded inside the host language. Our
categorical semantics for the host language is standard, and involves cartesian
closed categories and monads. We interpret the circuit language not in an
ordinary category, but in a category that is enriched in the host category. We
show that this structure is also related to linear/non-linear models. As an
extended example, we recall an earlier result that the category of W*-algebras
is dcpo-enriched, and we use this model to extend the circuit language with
some recursive types
Quantum channels as a categorical completion
We propose a categorical foundation for the connection between pure and mixed
states in quantum information and quantum computation. The foundation is based
on distributive monoidal categories.
First, we prove that the category of all quantum channels is a canonical
completion of the category of pure quantum operations (with ancilla
preparations). More precisely, we prove that the category of completely
positive trace-preserving maps between finite-dimensional C*-algebras is a
canonical completion of the category of finite-dimensional vector spaces and
isometries.
Second, we extend our result to give a foundation to the topological
relationships between quantum channels. We do this by generalizing our
categorical foundation to the topologically-enriched setting. In particular, we
show that the operator norm topology on quantum channels is the canonical
topology induced by the norm topology on isometries.Comment: 12 pages + ref, accepted at LICS 201
Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models
This paper deals with the formulations used to predict convection cooling and flow in electric machines. Empirical dimensionless analysis formulations are used to calculate convection heat transfer. The particular formulation used is selected to match the geometry of the surface under consideration and the cooling type used. Flow network analysis, which is used to study the ventilation inside the machine, is also presented. In order to focus the discussion using examples, a commercial software package dedicated to motor cooling optimization (Motor-CAD) is considered. This paper provides guidelines for choosing suitable thermal and flow network formulations and setting any calibration parameters used. It may also be considered a reference paper that brings together useful heat transfer and flow formulations that can be successfully applied to thermal analysis of electrical machine
Evaluation of the present theoretical basis for determination of planetary surface properties by earth-based radar
Spaceflight programs such as the planned Viking landing on Mars require the determination of planetary surface slopes and surface dielectric constants by earth-based methods. Heavy reliance is often placed on radar backscattering data for estimation of these surface properties. An assessment is presented of the basic theory by which the raw radar data are interpreted, and it is shown that serious difficulties and internal inconsistencies are present in the available theoretical formulas. The discussion brings into question the reliability of the presently available results for these surface properties as obtained by earth-based radar methods
TEFC Induction Motors Thermal Models: A parameter Sensitivity Analysis
With the increasing pressures on electric motor manufacturers to develop smaller and more efficient electric motors, there is a trend to carry out more thermal analysis in parallel with the traditional electromagnetic design. It has been found that attention to thermal design can be rewarded by major improvements in the overall performance. Thus, there is a requirement for accurate and reliable thermal analysis models that can be easily incorporated into motor design software. In this paper, emphasis is given to thermal sensitivity analysis of totally enclosed fan-cooled induction motors. In particular, thermal parameters are modified and their effects on the temperature rise shown. The results are useful for identifying the most important thermal parameters and enable robust designs to be developed that are insensitive to manufacturing tolerances
Sustainable Waste Sorter
Indiana University Purdue University IndianapolisThe purpose of this project is to help people eliminate the confusion on whether they should throw their trash away or dispose of it in a recycling bin. The sustainable waste sorter is an informative device that tells the user where to place their trash. Our customer and the origin of the idea came from an organization called Roche Diagnostics Operations. Roche Diagnostics Operations is a multinational healthcare organization, the Indianapolis location focuses more on creating and developing their diabetic test strips. The device is created of four main components which include a Raspberry Pi 2 Model B, a camera module, an LCD screen, and a casing/mount that holds all of these components together. All of these components are compatible with the Raspberry Pi 2 Model B. The software was programmed in Python and the database in MySQL. During the development of the device, the most challenging task was learning how to develop in the new language, Python. Once the device reached a stable state it was piloted at Roche Diagnostics Operations. The purpose of the first of three pilot sessions was to verify that the device worked in the environment and that the items entered in the database were recognized; as a result, the device passed that test. The second pilot session had the same purpose as the first pilot session but with more items in the database. The device received more interaction during the second pilot session, though the team decided to schedule a third pilot session once all the items were entered into the database and a revamped user interface was completed. The team entered about 800 entries into the database and created a new and interactive user interface for the device. The third pilot session was a success; the items that were scanned by testers were recognized and the new user interface was a success as well. Overall, the sustainable waste sorter project was successful and educational. We, as students, took all of our fundamental learnings from our previous courses and applied them to this project. This allowed us to enhance our problem solving and project management skills. As people use the device, we hope that it educates them on how to properly recycle therefore improving the environmental state of our planet.Computer Engineering Technolog
- …