311 research outputs found
Development of layered anode structures supported over Apatite-type Solid Electrolytes
Apatite-type lanthanum silicates (ATLS) materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode) can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm), NiO/GDC (4μm) and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h
Enhanced photocatalytic activity of CuWO4 doped TiO2 photocatalyst towards carbamazepine removal under UV irradiation
Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500◦C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0250.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly
LaAlO3-based topcoats for novel thermal barrier coatings deposited by means solution precursor thermal spraying
In this study we present the development of LaAlO3 coatings for TBC applications, by means of SPTS. LaAlO3 precursor solutions have been synthesized followed the in situ polymerization with citric acid [16-17]. The details of the solution synthesis, and deposition method, along with characterization of the deposits by means of Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) analysis, and microhardness measurements is reported. The effect of critical plasma spray deposition parameters on the resulting microstructural characteristics and phase composition of the developed coatings is discussed
Algebraic-matrix calculation of vibrational levels of triatomic molecules
We introduce an accurate and efficient algebraic technique for the
computation of the vibrational spectra of triatomic molecules, of both linear
and bent equilibrium geometry. The full three-dimensional potential energy
surface (PES), which can be based on entirely {\it ab initio} data, is
parameterized as a product Morse-cosine expansion, expressed in bond-angle
internal coordinates, and includes explicit interactions among the local modes.
We describe the stretching degrees of freedom in the framework of a Morse-type
expansion on a suitable algebraic basis, which provides exact analytical
expressions for the elements of a sparse Hamiltonian matrix. Likewise, we use a
cosine power expansion on a spherical harmonics basis for the bending degree of
freedom. The resulting matrix representation in the product space is very
sparse and vibrational levels and eigenfunctions can be obtained by efficient
diagonalization techniques. We apply this method to carbonyl sulfide OCS,
hydrogen cyanide HCN, water HO, and nitrogen dioxide NO. When we base
our calculations on high-quality PESs tuned to the experimental data, the
computed spectra are in very good agreement with the observed band origins.Comment: 11 pages, 2 figures, containg additional supporting information in
epaps.ps (results in tables, which are useful but not too important for the
paper
A multicenter phase III trial comparing irinotecan-gemcitabine (IG) with gemcitabine (G) monotherapy as first-line treatment in patients with locally advanced or metastatic pancreatic cancer
Our purpose was to determine the response rate and median and overall survival of gemcitabine as monotherapy versus gemcitabine plus irinotecan in advanced or metastatic pancreatic cancer. Patients with histologically or cytologically confirmed adenocarcinoma who were chemotherapy and radiotherapy naive were enrolled. Patients were centrally randomised at a one-to-one ratio to receive either gemcitabine monotherapy (900 mg m−2 on days 1, 8 and 15 every 4 weeks (arm G), or gemcitabine (days 1 and 8) plus irinotecan (300 mg m−2 on day 8) (arm IG), repeated every 3 weeks. The total number of cycles administered was 255 in the IG arm and 245 in the G arm; the median number of cycles was 3. In all, 145 patients (71 in arm IG and 74 in arm G) were enrolled; 60 and 70 patients from arms IG and G, respectively, were evaluable. A complete clinical response was achieved in three (4.3%) arm G patients; nine (15%) patients in arm IG and four (5.7%) in arm G achieved a partial response. The overall response rate was: arm IG 15% and arm G 10% (95% CI 5.96–24.04 and 95% CI 2.97–17.03, respectively; P=0.387). The median time to tumour progression was 2.8 months and 2.9 months and median survival time was 6.4 and 6.5 months for the IG and G arms, respectively. One-year survival was 24.3% for the IG arm and 21.8% for the G arm. No statistically significant difference was observed comparing gemcitabine monotherapy versus gemcitabine plus irinotecan in the treatment of advanced pancreatic cancer, with respect to overall and 1-year survival
Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer
In pancreatic cancer ( PC) accurate determination of treatment response by imaging often remains difficult. Various efforts have been undertaken to investigate new factors which may serve as more appropriate surrogate parameters of treatment efficacy. This review focuses on the role of carbohydrate antigen 19- 9 ( CA 19- 9) as a prognostic tumor marker in PC and summarizes its contribution to monitoring treatment efficacy. We undertook a Medline/ PubMed literature search to identify relevant trials that had analyzed the prognostic impact of CA 19- 9 in patients treated with surgery, chemoradiotherapy and chemotherapy for PC. Additionally, relevant abstract publications from scientific meetings were included. In advanced PC, pretreatment CA 19- 9 levels have a prognostic impact regarding overall survival. Also a CA 19- 9 decline under chemotherapy can provide prognostic information for median survival. A 20% reduction of CA 19- 9 baseline levels within the first 8 weeks of chemotherapy appears to be sufficient to define a prognostic relevant subgroup of patients ('CA 19- 9 responder'). It still remains to be defined whether the CA 19- 9 response is a more reliable method for evaluating treatment efficacy compared to conventional imaging. Copyright (c) 2006 S. Karger AG, Basel
- …