8 research outputs found
Specific manifestation of enzymomycotic depletion of grain on crop losses
Background. Enzymomycotic depletion of grain leads to a significant decrease in the dry matter mass of the grain, as the intensity of respiration increases, protein substances break down, enzymes (in particular, Ξ±-amylase) pass from the adsorbed form to the water-soluble one, and their activity increases sharply. One of the consequences of this is the intensive amylolysis of starch, which means a significant deterioration in the technological indicators of the quality of grain and seeds.
Materials and Methods. This study gives a thorough description of the process of enzymomycotic depletion of grain of soft winter wheat (Triticum aestivum L.), sowing rye (Secale cereale L.), winter triticale (Triticosecale Witt.) depending on abiotic factors and the sources of resistance to ear diseases 4, 8, 12 days after the onset of full ripeness in the conditions of the western forest-steppe of Ukraine (2019β2021). Research methods β general scientific, field, measurement and weight, mathematical and statistical.
Results and Discussion. According to the obtained results, the dependence of enzymomycotic depletion of grain on abiotic factors was established. The development of ear diseases depended both on weather factors and on the ecological plasticity of the cultivar. The highest percentage of the distribution of ear sepsoria was observed on the 12th day after the onset of full ripeness: wheat β 3.3 %, rye β 2.4 %, triticale β 1.9 %, fusarium, respectively 2.4 %, 1.9 %, 1 %, 8 %. The loss of dry matter in the weight of 1000 grains depended on the ecotype of the cultivar and the duration of the grain stanΒding time 4, 8, and 12 days after full ripeness.
Conclusion. The following cultivars were most resistant to EMDG: Oberih Myronivsky (wheat), Kobza (rye), Obrij Myronivsky (triticale); their base seed production profitability rates being 75.1 %, 116.6 %, and 146.8 %, respectively. The results of the study can be used in the selection of varieties of winter grain crops resistant to enzymomycotic grain depletion for the western forest-steppe and Polissya zones of Ukraine, where breeding work on these crops is not carried out and agricultural producers purchase seeds of new varieties from the originating institutions of the central forest-steppe to introduce them into production
Rights of a person and a citizen as the main aspect of anthropological paradigm of law
The article deals with the analysis of human and citizenβs rights, which became apparent in human culture, because just with culture is bound together everything directed to self-preservation, reproduction and improvement of human person and is embodied both in objects of material and spiritual world and in social life norms
Ecological and economic efficiency of growing maize for grain in short-rotation cultivation of the Western region
Purpose. The purpose of the article β to substantiate the economic efficiency and environmental feasibility of maize growing for grain in short-rotational cultivation in the Western region at different levels of anthropogenic loads. Methodology / approach. Ecological and economic assessment of the efficiency of growing maize for grain in short-rotation cultivation with the help of intensive and alternative organomineral fertilization systems was carried out on the basis of the interpretation of information array of data obtained in the conditions of a long-term experimental model range of the Institute of Agriculture of the Carpathian Region during 2016β2020. The economic efficiency was determined by the calculation method according to the technological maps developed by us. Results. It has been proved that the complex use of mineral (N120P100K100) and organic (both traditional β manure, and alternative β winter wheat straw β stubble predecessor in cultivation and green mass of post-harvest sidereal culture) fertilizers contributes to obtaining high productivity of maize grain with a yield of 6.10β6.87 t/ha of grain, 8.20β9.20 t/ha of feed units and 0.49β0.55 t/ha of digestible protein. It has been proven that the highest values of notional net profit (737 USD/ha) and payback of 1 USD of expenses (2.0 USD) are provided for joint application of mineral and alternative organic fertilizers. It has been established that a high conditional level of profitability of growing maize for grain (72β104 %) is formed for the introduction of mineral fertilizers at a dose of N120P100K100 on traditional and alternative organic backgrounds. The ecological-stabilizing role of organomineral fertilizing complexes has been substantiated in soil-grain processes, proposed for use in maize growing for grain. Originality / scientific novelty. For the first time in the conditions of the Western region, there is a scientifically substantiated ecological and economic feasibility of maize growing for grain in short-rotation cultivation with traditional and alternative fertilization systems. Practical value / implications. The proposed approaches for growing maize for grain in short-rotation cultivation of the Western region ensure its high grain productivity at the level of yield of 6.10β6.87 t/ha of grain, 8.20β9.20 t/ha of fodder and 0.49β0.55 t/ha of digestible protein, increase the conditional level of profitability up to 72β104 % for environmentally safe agricultural production
Patterns of winter wheat ear productivity formation depending on the content of trace elements in the soil
The study of patterns of the formation of ear productivity depending on the content of potentially bioavailable Fe, Mn, Zn, Cu in the soil, the stochastic formalization of such patterns are important for a more profound understanding of the conceptual and mechanistic aspects of the dependence of yield development on the levels of nutrient supply of winter wheat under the conditions of environmentally friendly fertilization systems. The purpose of this study was to find statistically significant interdependencies, significant and relevant univariate or multivariate regression equations of the dependence of the mass of grains of ear-1 of winter wheat on the content of potentially bioavailable Fe, Mn, Zn, Cu in the soil, arguments and explanations of such subordinations under the conditions of environmentally friendly fertilization systems. The following methods were used in the study: field, laboratoryanalytical, mass-spectrometric, mathematical-statistical (Studentβs t-test, ANOVA, correlational, single- and multivariate regression analyses). The applied green fertilization systems based on pea straw or pea straw + N30P45K45, or N60P90K90, only N60P90K90 caused an increase in the weight of grains of one ear of winter wheat, the content of mobile forms of Fe, Mn, Zn, Cu in the grey forest soil under this culture (earing phase), compared to the control (without fertilizers). Substantial and significant Pearson correlation coefficients between the mass of grains of an ear of wheat and the content of mobile Fe, Mn, Zn, Cu in the soil, the corresponding contents of Mn and Zn, Cu and Zn, as well as the coefficients of partial correlation of the mass of grains of ear-1 of wheat β Cu, Mn β Zn testified to the complex structure of interdependencies between the traits under study. Reliable, relevant single- and multifactorial regression dependences of the mass of grains of ear-1 on linear combinations of products of independent variables (the content of mobile Fe, Mn, Zn, Cu in the soil) and/or such variables in indicators of natural powers 2-4 (fragments of the Kolmogorov-Gabor polynomial) were found. The coverage of regularities in the formation of the productivity of the ear of winter wheat depending on the content of potentially bioavailable microelements in the soil under the conditions of environmentally friendly fertilization systems will enable the theoretical substantiation and development of the latest strategies of mineral and ecological engineering of agricultural systems to maintain prominent levels and biological safety of the harvest of the specified cro
Protection of patent law objects, created by artificial intelligence (AI) technologies
The aim of the article is to solve the scientific problem of outlining the issue of protection of patent law objects created using artificial intelligence technologies, and to establish whether it is possible to recognize artificial intelligence technologies as inventor at the present stage of development of legal systems. Philosophical, comparative-legal and system-structural methods were used in the research process. Based on the analysis of the European Patent Convention, the main generally accepted conditions of patentability of the invention are determined: novelty, inventive step, industrial applicability. It has been established that inventions created by artificial intelligence technologies will meet such criteria provided that certain requirements are met. In the context of the study, the case of the invention of artificial intelligence Β«DABUSΒ» is analyzed and the results of its consideration in the European Patent Organization, the United Kingdom and the United States are summarized. In particular, it has been established that artificial intelligence technologies are currently not considered as inventors in either the Romano-Germanic or Anglo-Saxon legal systems
ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π½Π°ΡΡΠ½Π½Ρ ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ ΠΏΠΎΡΡΠ²Π½ΠΈΡ , ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΡ ΠΎΠ»ΡΡ ΡΠ° ΠΌΠ°ΠΊΡΡ ΠΈ
For the time being, the use of cannabis for medical purposes is more and more relevant. A review of literary sources shows that Ukrainian varieties of hemp are insufficiently studied. Therefore, the variety "Glesia" was chosen for the study, as it is the most promising Ukrainian variety. Fatty oil from hemp seeds is the leading pharmaceutical and food product produced from this raw material in Ukraine. During its production, the pomace remains, which is used for feeding animals. At the same time, it still contains many other BAS and can be a valuable raw material for creating pharmaceutical products. Therefore, developing technologies for the complex processing of this raw material is an urgent task of modern pharmaceutical science.
The aim of this work was a phytochemical study of biologically active substances of hemp seeds, hemp seed oil and hemp pomace in order to develop the new phytoremedies.
Materials and methods. Non-narcotic hemp seeds of the "Glesia" variety, hemp seed oil and hemp pomace were the objects of research. The elemental analysis was made using inductively coupled plasma atomic emission spectrometry - iCAP 7000 Duo; the study of amino acids was made using ion exchange chromatography; the study of fatty acids was made using gas-liquid chromatography. In addition, the content of vitamin E (Ξ±-, Ξ²- and Ξ³-tocopherols) was studied using high-performance liquid chromatography (HPLC) with UV detection; the content of protein was studied using A.I. Ermakov method in O.O. Sozinov and F.O. Poperelia modification.
Research results. The analysis of the qualitative characteristics of the obtained fatty oils shows that all indicators met the requirements of the State Standard of Ukraine. For the first time, the transition of macro- and microelements from hemp seeds of the "Glesia" variety into fatty oil was determined, and their residue in the pomace was established. The content of 16 amino acids was determined. The content of saturated and unsaturated fatty acids in oil samples was established. The content of Ξ±- Ξ²- Ξ³-tocopherol in hemp seeds, hemp oil and hemp pomace was investigated using GC / MS. It was found that the protein content in the pomace was in the range of 32.8 β 34.6 %.
Conclusions. We conducted a complex study of biologically active substances of non-narcotic hemp seeds of the "Glesia" variety that was harvested in 2019 and 2020, the hemp oil and hemp pomace. It was established that the content of macro- and microelements in the studied raw material of Cannabis sativa L. corresponds to the following order: Ca> Mg> Si> Fe> Al> Mn> Zn> Sr> B> Cu> Ba> Cr and Ni> Se> Co> Mo> Cd> Be> I> Pb. The content of 16 amino acids was determined. Of them, 7 amino acids are essential (leucine, valine, threonine, lysine, methionine, isoleucine, phenylalanine), 2 amino acids are essential for children (histidine and arginine), and 7 amino acids are replaceable (alanine, tyrosine, proline, glycine, glutamic and aspartic acids). It was found that the main fatty acids of all samples were linoleic, oleic and linolenic. The content of Ξ±- and Ξ³-tocopherol predominated in the studied samples. Hemp seeds of the "Glesia" variety and hemp pomace contain protein. The protein content in the pomace ranged from 32.8 to 34.6 %Π¦Π΅Π»Ρ: ΠΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ Π°ΡΡΠΎΡΡΠΈΠΌΠ΅Π½ΡΠ° Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ, Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠΌΠΈ, Π°Π½ΡΠΈΠ΄Π΅ΠΏΡΠ΅ΡΡΠΈΠ²Π½ΡΠΌΠΈ ΠΈ ΠΎΠ±Π΅Π·Π±ΠΎΠ»ΠΈΠ²Π°ΡΡΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠΈΡΠΊ Π½ΠΎΠ²ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΠΏΠΎΡΠ΅Π²Π½ΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π΄Π»Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΠΌΠ°ΡΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ. Π¦Π΅Π»ΡΡ ΡΡΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ² ΡΠ΅ΠΌΡΠ½ ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΠΏΠΎΡΠ΅Π²Π½ΠΎΠΉ, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»Π° ΠΈ ΠΆΠΌΡΡ
Π° Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠΈΡΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ².
ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ: ΡΠ΅ΠΌΠ΅Π½Π° Π½Π΅Π½Π°ΡΠΊΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΡΠΎΡΡΠ° Β«ΠΠ»Π΅ΡΠΈΡΒ», ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΠ΅ ΠΌΠ°ΡΠ»ΠΎ ΠΈ ΠΆΠΌΡΡ
. ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Β«ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°Β» ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ-ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ iCAP 7000 Duo; Β«Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°Β» - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ; Β«ΠΆΠΈΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°Β» - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ; ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Β«Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° ΠΒ» (Ξ±-, Ξ²- ΠΈ Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»ΠΎΠ²) - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (ΠΠΠΠ₯) Ρ ΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ (Π² ΡΠ»ΡΡΡΠ°ΡΠΈΠΎΠ»Π΅ΡΠΎΠ²ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ) Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ; Β«Π±Π΅Π»ΠΊΠ°Β» - ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ A.Π. ΠΡΠΌΠ°ΠΊΠΎΠ²ΡΠΌ Π² ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π.Π. Π‘ΠΎΠ·ΠΈΠ½ΠΎΠ²Π° ΠΈ Π€.Π. ΠΠΎΠΏΠ΅ΡΠ΅Π»ΠΈ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΆΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅Π» ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ, ΡΡΠΎ Π²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°Π»ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΠΎΡΡΡΠ°Π½Π΄Π°ΡΡΠ° Π£ΠΊΡΠ°ΠΈΠ½Ρ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° ΠΌΠ°ΠΊΡΠΎ- ΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ· ΡΠ΅ΠΌΡΠ½ ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΡΠΎΡΡΠ° Β«ΠΠ»Π΅ΡΠΈΡΒ» Π² ΠΆΠΈΡΠ½ΠΎΠ΅ ΠΌΠ°ΡΠ»ΠΎ ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΈΡ
ΠΎΡΡΠ°ΡΠΎΠΊ Π² ΠΆΠΌΡΡ
Π΅. ΠΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ 16 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΈ Π½Π΅Π½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΌΠ°ΡΠ»Π°. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Ξ±-, Ξ²-, Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»Π° Π² ΡΠ΅ΠΌΠ΅Π½Π°Ρ
, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΠΌ ΠΌΠ°ΡΠ»Π΅ ΠΈ ΠΆΠΌΡΡ
Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯ / ΠΠ‘. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π² ΠΆΠΌΡΡ
Π΅ Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
32,8 - 34,6%.
ΠΡΠ²ΠΎΠ΄Ρ. ΠΠ°ΠΌΠΈ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠΠ ΡΠ΅ΠΌΡΠ½ Π½Π΅Π½Π°ΡΠΊΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΡΠΎΡΡΠ° Β«ΠΠ»Π΅ΡΠΈΡΒ» 2019 ΠΈ 2020 Π³ΠΎΠ΄ΠΎΠ² Π·Π°Π³ΠΎΡΠΎΠ²ΠΊΠΈ, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»Π° ΠΈ ΠΆΠΌΡΡ
Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΎ- ΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΉ ΡΡΡΡΠ΅ CΠ°nnabis sativa L. ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΈΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡΠΌ: Ca> Mg> Si> Fe> Al> Mn> Zn> Sr> B> Cu> Ba> Cr ΠΈ Ni> Se> Co> Mo> Cd> Be> I> Pb. ΠΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ 16 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
7 ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡΠΌ (Π»Π΅ΠΉΡΠΈΠ½, Π²Π°Π»ΠΈΠ½, ΡΡΠ΅ΠΎΠ½ΠΈΠ½, Π»ΠΈΠ·ΠΈΠ½, ΠΌΠ΅ΡΠΈΠΎΠ½ΠΈΠ½, ΠΈΠ·ΠΎΠ»Π΅ΠΉΡΠΈΠ½, ΡΠ΅Π½ΠΈΠ»Π°Π»Π°Π½ΠΈΠ½) ΠΈ 2 β ΠΊ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡΠΌ Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΉ (Π³ΠΈΡΡΠΈΠ΄ΠΈΠ½ ΠΈ Π°ΡΠ³ΠΈΠ½ΠΈΠ½), 7 Π°ΠΌΠΈΠ½ΠΎ ΠΊΠΈΡΠ»ΠΎΡ β Π·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌΡ (Π°Π»Π°Π½ΠΈΠ½, ΡΠΈΡΠΎΠ·ΠΈΠ½, ΠΏΡΠΎΠ»ΠΈΠ½, Π³Π»ΠΈΡΠΈΠ½, ΡΠ΅ΡΠΈΠ½, Π³Π»ΡΡΠ°ΠΌΠΈΠ½ΠΎΠ²Π°Ρ ΠΈ Π°ΡΠΏΠ°ΡΠ°Π³ΠΈΠ½ΠΎΠ²Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΡ). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΠΆΠΈΡΠ½ΡΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ Π² ΡΠΎΡΡΠ°Π²Π΅ Π²ΡΠ΅Ρ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΡΠ»ΠΈ Π»ΠΈΠ½ΠΎΠ»Π΅Π²Π°Ρ, ΠΎΠ»Π΅ΠΈΠ½ΠΎΠ²Π°Ρ ΠΈ Π»ΠΈΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π°Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π°- ΠΈ Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»Π°. Π‘Π΅ΠΌΠ΅Π½Π° ΠΈ ΠΆΠΌΡΡ
ΠΊΠΎΠ½ΠΎΠΏΠ»ΠΈ ΡΠΎΡΡΠ° Β«ΠΠ»Π΅ΡΠΈΡΒ» ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π±Π΅Π»ΠΎΠΊ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π² ΠΆΠΌΡΡ
Π΅ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
32,8 - 34,6%.
ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: CΠ°nnabis sativa L., ΡΠ΅ΠΌΠ΅Π½Π°, ΠΆΠΈΡΠ½ΠΎΠ΅ ΠΌΠ°ΡΠ»ΠΎ, ΠΆΠΌΡΡ
, ΠΌΠ°ΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΠΆΠΈΡΠ½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ, Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΡ, ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ», Π±Π΅Π»ΠΎΠΊ.ΠΠ΅ΡΠ°: ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΊΠ°Π½ΠΎΠΏΠ΅Π»Ρ Ρ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΈΡ
ΡΡΠ»ΡΡ
ΡΡΠ°Ρ Π²ΡΠ΅ Π±ΡΠ»ΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΈΠΌ. ΠΠ³Π»ΡΠ΄ Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄ΠΆΠ΅ΡΠ΅Π» ΠΏΠΎΠΊΠ°Π·ΡΡ, ΡΠΎ ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΡ ΡΠΎΡΡΠΈ ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ Π²Π²ΠΈΠ²ΡΠ΅Π½Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΡΠ½ΡΠΎ. Π’ΠΎΠΌΡ Π΄Π»Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ² ΠΎΠ±ΡΠ°Π½ΠΈΠΉ ΡΠΎΡΡ Β«ΠΠ»Π΅ΡΡΡΒ», ΡΠΊ Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠΈΠΌ ΡΠΎΡΡΠΎΠΌ. ΠΠΈΡΠ½Π° ΠΎΠ»ΡΡ Π· Π½Π°ΡΡΠ½Π½Ρ ΠΊΠ°Π½ΠΎΠΏΠ΅Π»Ρ Ρ ΠΎΡΠ½ΠΎΠ²Π½ΠΈΠΌ ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ½ΠΈΠΌ ΡΠ° Ρ
Π°ΡΡΠΎΠ²ΠΈΠΌ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠΌ, ΡΠΊΠΈΠΉ Π²ΠΈΡΠΎΠ±Π»ΡΡΡΡΡΡ Π· ΡΡΡΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ Π² Π£ΠΊΡΠ°ΡΠ½Ρ. ΠΡΠΈ ΡΡ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Ρ Π·Π°Π»ΠΈΡΠ°ΡΡΡΡΡ ΠΌΠ°ΠΊΡΡ
Π°, ΡΠΊΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡ Π΄Π»Ρ Ρ
Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ²Π°ΡΠΈΠ½, ΡΠΎΠ΄Ρ ΡΠΊ Π²ΠΎΠ½Π° ΠΌΡΡΡΠΈΡΡ ΡΠ΅ Π·Π½Π°ΡΠ½Ρ ΠΊΡΠ»ΡΠΊΡΡΡΡ ΡΠ½ΡΠΈΡ
ΠΠΠ ΡΠ° ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ ΡΡΠ½Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΎΡ Π΄Π»Ρ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ². Π’ΠΎΠΌΡ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠ° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΡ ΠΏΠ΅ΡΠ΅ΡΠΎΠ±ΠΊΠΈ ΡΡΡΡ ΡΠΈΡΠΎΠΈΠ²Π½ΠΈ Ρ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡ Π·Π°Π΄Π°ΡΠ΅Ρ ΡΡΡΠ°ΡΠ½ΠΎΡ ΡΠ°ΡΠΌΠ°ΡΠ΅Π²ΡΠΈΡΠ½ΠΎΡ Π½Π°ΡΠΊΠΈ.
ΠΠ΅ΡΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π±ΡΠ»ΠΎ ΡΡΡΠΎΡ
ΡΠΌΡΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½ Π½Π°ΡΡΠ½Π½Ρ ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ ΠΏΠΎΡΡΠ²Π½ΠΈΡ
, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΡ ΠΎΠ»ΡΡ ΡΠ° ΠΌΠ°ΠΊΡΡ
ΠΈ Π· ΠΌΠ΅ΡΠΎΡ ΠΏΠΎΠ΄Π°Π»ΡΡΠΎΠ³ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΡΡΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ².
ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠ±βΡΠΊΡΠ°ΠΌΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π±ΡΠ»ΠΈ: Π½Π°ΡΡΠ½Π½Ρ Π½Π΅Π½Π°ΡΠΊΠΎΡΠΈΡΠ½ΠΈΡ
ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ ΡΠΎΡΡΡ Β«ΠΠ»Π΅ΡΡΡΒ», ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½Π° ΠΎΠ»ΡΡ ΡΠ° ΠΌΠ°ΠΊΡΡ
Π°. ΠΠΈΠ²ΡΠ΅Π½Π½Ρ Β«Π΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄ΡΒ» ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°ΡΠΎΠΌΠ½ΠΎ-Π΅ΠΌΡΡΡΠΉΠ½ΠΎΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΡΡ Π· ΡΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎ-Π·Π²βΡΠ·Π°Π½ΠΎΡ ΠΏΠ»Π°Π·ΠΌΠΎΡ iCAP 7000 Duo; Β«Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄ΡΒ» - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΎΠ½ΠΎΠΎΠ±ΠΌΡΠ½Π½ΠΎΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ; Β«ΠΆΠΈΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄ΡΒ» - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΡΡΠ΄ΠΈΠ½Π½ΠΎΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ; Π²ΠΌΡΡΡΡ Β«Π²ΡΡΠ°ΠΌΡΠ½Ρ ΠΒ» (Ξ±-, Ξ²- Ρ Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»ΡΠ²) - ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΠΈΡΠΎΠΊΠΎΠ΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΡΡΠ΄ΠΈΠ½Π½ΠΎΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΡΡ (ΠΠΠ Π₯) Π· ΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΠΌ (Π² ΡΠ»ΡΡΡΠ°ΡΡΠΎΠ»Π΅ΡΠΎΠ²ΠΎΡ ΠΎΠ±Π»Π°ΡΡΡ) Π΄Π΅ΡΠ΅ΠΊΡΡΠ²Π°Π½Π½ΡΠΌ; Β«Π±ΡΠ»ΠΊΠ°Β» - Π·Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΡ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ A.Π.Β ΠΡΠΌΠ°ΠΊΠΎΠ²ΠΈΠΌ Π² ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ Π.Π. Π‘ΠΎΠ·ΠΈΠ½ΠΎΠ²Π° Ρ Π€.Π. ΠΠΎΠΏΠ΅ΡΠ΅Π»Ρ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π½Π°ΠΌΠΈ Π°Π½Π°Π»ΡΠ· ΡΠΊΡΡΠ½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΠΆΠΈΡΠ½ΠΈΡ
ΠΎΠ»ΡΠΉ ΡΠ²ΡΠ΄ΡΠΈΡΡ, ΡΠΎ Π²ΡΡ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Π»ΠΈ Π²ΠΈΠΌΠΎΠ³Π°ΠΌ ΠΠ΅ΡΠΆΡΡΠ°Π½Π΄Π°ΡΡΡ Π£ΠΊΡΠ°ΡΠ½ΠΈ. ΠΠΏΠ΅ΡΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π΄ΠΈΠ½Π°ΠΌΡΠΊΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Ρ ΠΌΠ°ΠΊΡΠΎ- ΡΠ° ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π· Π½Π°ΡΡΠ½Π½Ρ ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ ΡΠΎΡΡΡ Β«ΠΠ»Π΅ΡΡΡΒ» Π² ΠΆΠΈΡΠ½Ρ ΠΎΠ»ΡΡ ΡΠ° Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΡΡ
Π·Π°Π»ΠΈΡΠΎΠΊ Π² ΠΌΠ°ΠΊΡΡΡ. ΠΡΠ»ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ Π²ΠΌΡΡΡ 16 Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π²ΠΌΡΡΡ Π½Π°ΡΠΈΡΠ΅Π½ΠΈΡ
ΡΠ° Π½Π΅Π½Π°ΡΠΈΡΠ΅Π½ΠΈΡ
ΠΆΠΈΡΠ½ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ Π² Π·ΡΠ°Π·ΠΊΠ°Ρ
ΠΎΠ»ΡΡ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ Π²ΠΌΡΡΡ Ξ±- , Ξ²- , Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»Ρ Π² Π½Π°ΡΡΠ½Π½Ρ, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΡΠΉ ΠΎΠ»ΡΡ ΡΠ° ΠΌΠ°ΠΊΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠ₯/ΠΠ‘. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΠΌΡΡΡ Π±ΡΠ»ΠΊΡ Π² ΠΌΠ°ΠΊΡΡΡ Π·Π½Π°Ρ
ΠΎΠ΄ΠΈΠ²ΡΡ Π² ΠΌΠ΅ΠΆΠ°Ρ
32,8 - 34,6 %.
ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΠ°ΠΌΠΈ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡΡΠΎΡ
ΡΠΌΡΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΠΠ Π½Π°ΡΡΠ½Π½Ρ Π½Π΅Π½Π°ΡΠΊΠΎΡΠΈΡΠ½ΠΎΡ ΠΊΠΎΠ½ΠΎΠΏΠ»Ρ ΡΠΎΡΡΡ Β«ΠΠ»Π΅ΡΡΡΒ» 2019 ΡΠ° 2020 ΡΠΎΠΊΡΠ² Π·Π°Π³ΠΎΡΡΠ²Π»Ρ, ΠΊΠΎΠ½ΠΎΠΏΠ»ΡΠ½ΠΎΡ ΠΎΠ»ΡΡ ΡΠ° ΠΌΠ°ΠΊΡΡ
ΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΊΡΠ»ΡΠΊΡΡΠ½ΠΈΠΉ Π²ΠΌΡΡΡ ΠΌΠ°ΠΊΡΠΎ- ΡΠ° ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π² Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΡΠΉ ΡΠΈΡΠΎΠ²ΠΈΠ½Ρ CΠ°nnabis sativa L. ΠΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Ρ ΡΠ°ΠΊΠΈΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡΠΌ: Ca> Mg> Si> Fe> Al> Mn> Zn> Sr> B> Cu> Ba> Cr ΡΠ° Ni> Se> Co> Mo> Cd> Be> I> Pb. ΠΡΠ»ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ Π²ΠΌΡΡΡ 16 Π°ΠΌΡΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, Π· ΡΠΊΠΈΡ
7 Π²ΡΠ΄Π½ΠΎΡΡΡΡΡΡ Π΄ΠΎ Π½Π΅Π·Π°ΠΌΡΠ½Π½ΠΈΡ
(Π»Π΅ΠΉΡΠΈΠ½, Π²Π°Π»ΡΠ½, ΡΡΠ΅ΠΎΠ½ΡΠ½, Π»ΡΠ·ΠΈΠ½, ΠΌΠ΅ΡΡΠΎΠ½ΡΠ½, ΡΠ·ΠΎΠ»Π΅ΠΉΡΠΈΠ½, ΡΠ΅Π½ΡΠ»Π°Π»Π°Π½ΡΠ½) ΡΠ° 2 Π½Π΅Π·Π°ΠΌΡΠ½Π½ΠΈΡ
Π΄Π»Ρ Π΄ΡΡΠ΅ΠΉ (Π³ΡΡΡΠΈΠ΄ΠΈΠ½ Ρ Π°ΡΠ³ΡΠ½ΡΠ½), 7 Π·Π°ΠΌΡΠ½Π½ΠΈΡ
(Π°Π»Π°Π½ΡΠ½, ΡΠΈΡΠΎΠ·ΠΈΠ½, ΠΏΡΠΎΠ»ΡΠ½, Π³Π»ΡΡΠΈΠ½, ΡΠ΅ΡΠΈΠ½, Π³Π»ΡΡΠ°ΠΌΡΠ½ΠΎΠ²Π° ΡΠ° Π°ΡΠΏΠ°ΡΠ°Π³ΡΠ½ΠΎΠ²Π° ΠΊΠΈΡΠ»ΠΎΡΠΈ). ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΈΠΌΠΈ ΠΆΠΈΡΠ½ΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ Ρ ΡΠΊΠ»Π°Π΄Ρ Π²ΡΡΡ
Π·ΡΠ°Π·ΠΊΡΠ² Π±ΡΠ»ΠΈ Π»ΡΠ½ΠΎΠ»Π΅Π²Π°, ΠΎΠ»Π΅ΡΠ½ΠΎΠ²Π° ΡΠ° Π»ΡΠ½ΠΎΠ»Π΅Π½ΠΎΠ²Π°. Π Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΠ°Ρ
ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ°Π² Π²ΠΌΡΡΡ Π°- ΡΠ° Ξ³-ΡΠΎΠΊΠΎΡΠ΅ΡΠΎΠ»Ρ. ΠΠ°ΡΡΠ½Π½Ρ ΡΠ° ΠΌΠ°ΠΊΡΡ
Π° ΠΊΠΎΠ½ΠΎΠΏΠ΅Π»Ρ ΡΠΎΡΡΡ Β«ΠΠ»Π΅ΡΡΡΒ» Π²ΠΌΡΡΡΡΡΡ Π±ΡΠ»ΠΎΠΊ. ΠΠΌΡΡΡ Π±ΡΠ»ΠΊΡ Π² ΠΌΠ°ΠΊΡΡΡ Π·Π½Π°Ρ
ΠΎΠ΄ΠΈΠ²ΡΡ Π² ΠΌΠ΅ΠΆΠ°Ρ
32,8 - 34,6 %
Luminescence mechanisms in the 2VO-xLiO-(98-x)BO glass matrices developed for creation of glass-ceramic materials
The oxide glass-ceramics is a promising class of solid state materials because they are based on thermally stable and chemically inert glass oxide matrices. Development of such efficient glass matrices suitable for creation of glass-ceramic materials for several purposes is an important practical task. The xLiO-yVO-(100-x-y)BO undoped glass and 47LiO-VO-50BO-1LaEuVO glass samples with crystalline nanoinclusions were synthesized and investigated using XRD, IR and UV-Vis spectroscopy and UV band-to-band excitation of luminescence. The synthesized glass samples are characterized by wide band photoluminescence emission with maximum at 570 nm and intensity increased with increase of LiO concentration. The excitation spectra consist of three bands with maxima located at 270, 320 and 365 nm. The observed concentration dependencies of spectral distributions in the absorption and excitation spectra are explained by influence of the lithium ions on a ratio between triborate and tetraborate groups in the glass networks. The assumption is made that the observed wide band photoluminescence emission of the glass matrix can appear as a result of recombination processes between the defects in borate networks and the broken vanadate groups. The crystalline component in the doped glass samples is found to not affect the luminescence properties of the glass matrix. Intensity of narrow band photoluminescence emission of the crystalline component is up to 10 times more intense than that of the glass matrix wide band emission. The synthesized type of the glass matrices has promising characteristics for the use of developed materials in lighting devices, as it allows improving the spectral distribution of light emission towards the white light