14 research outputs found

    Bacterial translocation occurs early in cirrhosis and triggers a selective infammatory response

    Get PDF
    Background: Experimental data suggest that bacterial translocation (BT) promotes systemic inflammation, portal hypertension, and circulatory dysfunction in advanced chronic liver disease (ACLD). Methods: Patients with ACLD undergoing hepatic venous pressure gradient (HVPG) measurement and absence of acute decompensation or infections were included (n = 249). Serum biomarkers of BT (lipopolysaccharide [LPS], lipoteichoic acid [LTA], bacterial DNA [bactDNA]), systemic inflammation and markers of circulatory dysfunction were assessed. T-cell subsets in intestinal biopsies (n = 7 ACLD, n = 4 controls) were analyzed by flow cytometry. Results: Patients had a median HVPG of 18 (12-21) mmHg and 56% had decompensated ACLD. LPS (0.04 [0.02-0.06] vs. 0.64 [0.30-1.06] EU/mL), LTA (4.53 [3.58-5.97] vs. 43.2 [23.2-109] pg/mL), and detection of bactDNA (≄ 5 pg/mL; 5% vs. 41%) were markedly higher in patients with ACLD than healthy controls (n = 40; p < 0.001) but were similar between different clinical stages of compensated and decompensated ACLD and displayed no meaningful correlation with HVPG and systemic hemodynamics. TNF-α and IL-10 correlated with LPS (Spearman's rs = 0.523, p < 0.001/rs = 0.143, p = 0.024) but not with LTA. Presence of bactDNA was associated with higher LPS (0.54 [0.28-0.95] vs. 0.88 [0.32-1.31] EU/mL, p = 0.001) and TNF-α (15.3 [6.31-28.1] vs. 20.9 [13.8-32.9] pg/mL). Patients with ACLD exhibited a decreased CD4:CD8-ratio and increased TH1-cells in the intestinal mucosa as compared to controls. During a median FU of 14.7 (8.20-26.5) months, bacterial antigens did not predict decompensation or liver-related death (in contrast to HVPG, IL-6, and MAP) as well as infections at 24 months. Conclusion: BT occurs already in early ACLD stages and triggers a systemic inflammatory response via TNF-α and IL-10. Interestingly, BT markers showed no clear correlation with portal hypertension and circulatory dysfunction in patients with stable ACLD

    Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Get PDF
    Einax M, Richter T, Nimmrich M, et al. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104). Journal of Chemical Physics. 2016;145(13):134702.Molecular self-assembly of racemic heptahelicene-2-carboxylic acid on a dielectric substrate at room temperature can be used to generate wire-like organic nanostructures consisting of single and double molecular rows. By means of non-contact atomic force microscopy, we investigate the growth of the wire-like pattern after deposition by experimental and theoretical means. From analyzing the time dependence of the mean row length, two distinct regimes were found. At the early post-deposition stage, the mean length grows in time. Subsequently, a crossover to a second regime is observed, where the mean row length remains nearly constant. We explain these findings by a mean-field rate equation approach providing a comprehensive picture of the growth kinetics. As a result, we demonstrate that the crossover between the two distinct regimes is accomplished by vanishing of the homochiral single rows. At later stages only heterochiral double row structures remain. Published by AIP Publishing

    Molecular Self-Assembly of Enantiopure Heptahelicene-2-Carboxylic Acid on Calcite (1014)

    Get PDF
    Hauke CM, Rahe P, Nimmrich M, et al. Molecular Self-Assembly of Enantiopure Heptahelicene-2-Carboxylic Acid on Calcite (1014). Journal of Physical Chemistry C. 2012;116(7):4637-4641.Chirality can have a decisive influence on the molecular structure formation upon self-assembly on surfaces. In this paper, we study the structures formed by enantiopure (M)-heptahelicene-2-carboxylic acid ((M)-[7]HCA) on the calcite (10 (1) over bar4) cleavage plane under ultrahigh vacuum conditions. Previous noncontact atomic force microscopy studies have revealed that the racemic mixture of (M)-[7]HCA and (P)-[7]FICA (1:1) self-assembles into well-defined molecular double rows that are oriented along the calcite [01 (1) over bar0] direction. Here, we investigate the enantiopure (M)[7]HCA compound, resulting in distinctly different molecular structures upon deposition onto calcite (10 (1) over bar4). In sharp contrast to the racemate, the (M)-[7]HCA enantiomer forms molecular islands with a (2 x 3) superstructure. Comparison of the results presented here for the enantiopure compound with the results previously obtained from the racemate indicates that heterochiral recognition is responsible for the formation of the unidirectional double row structures formed by the racemate

    Toward Molecular Nanowires Self-Assembled on an Insulating Substrate: Heptahelicene-2-carboxylic acid on Calcite (1014)

    Get PDF
    Rahe P, Nimmrich M, Greuling A, et al. Toward Molecular Nanowires Self-Assembled on an Insulating Substrate: Heptahelicene-2-carboxylic acid on Calcite (1014). Journal of Physical Chemistry C. 2010;114(3):1547-1552.Molecular self-assembly is employed for creating unidirectional molecular nanostructures on a truly insulating substrate, namely the (10 (1) over bar4) cleavage plane of calcite. The molecule used is racemic heptahelicene-2-carboxylic acid, which forms structures, well-aligned along the [010] crystallographic direction and stable at room temperature. Precise control of both molecule-substrate and molecule-molecule interaction is required, leading to the formation of such wire-like structures of well-defined width and lengths exceeding 100 nm. This subtle balance is governed by the heptahelicene-2-carboxylic acid used in this study, allowing for both hydrogen bond formation as well pi-pi stacking

    Different pathways for activation and deactivation in CaV1.2: a minimal gating model

    Get PDF
    Point mutations in pore-lining S6 segments of CaV1.2 shift the voltage dependence of activation into the hyperpolarizing direction and significantly decelerate current activation and deactivation. Here, we analyze theses changes in channel gating in terms of a circular four-state model accounting for an activation R–A–O and a deactivation O–D–R pathway. Transitions between resting-closed (R) and activated-closed (A) states (rate constants x(V) and y(V)) and open (O) and deactivated-open (D) states (u(V) and w(V)) describe voltage-dependent sensor movements. Voltage-independent pore openings and closures during activation (A–O) and deactivation (D–R) are described by rate constants α and ÎČ, and Îł and ÎŽ, respectively. Rate constants were determined for 16-channel constructs assuming that pore mutations in IIS6 do not affect the activating transition of the voltage-sensing machinery (x(V) and y(V)). Estimated model parameters of 15 CaV1.2 constructs well describe the activation and deactivation processes. Voltage dependence of the “pore-releasing” sensor movement ((x(V)) was much weaker than the voltage dependence of “pore-locking” sensor movement (y(V)). Our data suggest that changes in membrane voltage are more efficient in closing than in opening CaV1.2. The model failed to reproduce current kinetics of mutation A780P that was, however, accurately fitted with individually adjusted x(V) and y(V). We speculate that structural changes induced by a proline substitution in this position may disturb the voltage-sensing domain

    Substitution potential of bio-based packaging films in food industries

    No full text
    Hemizellulose basierte Verpackungsfolien (HBF) können unter anderem als Lebensmittelverpackung eingesetzt werden. Auf Basis einer B2B-Befragung wurde ein Substitutionsmodel unter BerĂŒcksichtigung der technischen Eigenschaften entwickelt. Demnach kommen bestehende HBF auf ein Potenzial von rund 927 t/a oder 0,1% der eingesetzten Menge im deutschsprachigen Raum. Die hohe WasserdampfdurchlĂ€ssigkeit und die mangelnde Siegelbarkeit sind dabei die limitierenden Faktoren.Hemicelluloses based films (HBF) may be used for food packaging. Based on information from a B2B-survey in the food packaging industry in German speaking countries, a substitution potential model considering varying film properties was developed. State of the art HBF show therefore a potential of 927 t/a or 0.1% of the total volume. The high water vapor permeability and the lack of sealing capabilities are considered major limitations.Caroline Ledl, Philipp Stary, Peter Schwarzbauer und Tobias Ster

    Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis

    No full text
    Ocular graft-versus-host disease (oGVHD) is a fast progressing, autoimmunological disease following hematopoietic stem cell transplantation, leading to severe inflammation of the eye and destruction of the lacrimal functional unit with consecutive sight-threatening consequences. The therapeutic window of opportunity is narrow, and current treatment options are limited and often insufficient. To achieve new insights into the pathogenesis and to develop new therapeutic approaches, clinically relevant models of oGVHD are desirable. In this study, the ocular phenotype was described in a murine, chemotherapy-based, minor-mismatch GVHD model mimicking early-onset chronic oGVHD, with corneal epitheliopathy, inflammation of the lacrimal glands, and blepharitis. Additionally, corneal lymphangiogenesis was observed as part of oGVHD pathogenesis for the first time, thus opening up the investigation of lymphangiogenesis as a potential therapeutic and diagnostic tool

    Psoriatic skin inflammation is promoted by c‐Jun/AP‐1‐dependent CCL2 and IL‐23 expression in dendritic cells

    No full text
    Abstract Toll‐like receptor (TLR) stimulation induces innate immune responses involved in many inflammatory disorders including psoriasis. Although activation of the AP‐1 transcription factor complex is common in TLR signaling, the specific involvement and induced targets remain poorly understood. Here, we investigated the role of c‐Jun/AP‐1 protein in skin inflammation following TLR7 activation using human psoriatic skin, dendritic cells (DC), and genetically engineered mouse models. We show that c‐Jun regulates CCL2 production in DCs leading to impaired recruitment of plasmacytoid DCs to inflamed skin after treatment with the TLR7/8 agonist Imiquimod. Furthermore, deletion of c‐Jun in DCs or chemical blockade of JNK/c‐Jun signaling ameliorates psoriasis‐like skin inflammation by reducing IL‐23 production in DCs. Importantly, the control of IL‐23 and CCL2 by c‐Jun is most pronounced in murine type‐2 DCs. CCL2 and IL‐23 expression co‐localize with c‐Jun in type‐2/inflammatory DCs in human psoriatic skin and JNK‐AP‐1 inhibition reduces the expression of these targets in TLR7/8‐stimulated human DCs. Therefore, c‐Jun/AP‐1 is a central driver of TLR7‐induced immune responses by DCs and JNK/c‐Jun a potential therapeutic target in psoriasis

    CircRNAs Dysregulated in Juvenile Myelomonocytic Leukemia: CircMCTP1 Stands Out

    Get PDF
    Juvenile myelomonocytic leukemia (JMML), a rare myelodysplastic/myeloproliferative neoplasm of early childhood, is characterized by clonal growth of RAS signaling addicted stem cells. JMML subtypes are defined by specific RAS pathway mutations and display distinct gene, microRNA (miRNA) and long non-coding RNA expression profiles. Here we zoom in on circular RNAs (circRNAs), molecules that, when abnormally expressed, may participate in malignant deviation of cellular processes. CirComPara software was used to annotate and quantify circRNAs in RNA-seq data of a "discovery cohort" comprising 19 JMML patients and 3 healthy donors (HD). In an independent set of 12 JMML patients and 6 HD, expression of 27 circRNAs was analyzed by qRT-PCR. CircRNA-miRNA-gene networks were reconstructed using circRNA function prediction and gene expression data. We identified 119 circRNAs dysregulated in JMML and 59 genes showing an imbalance of the circular and linear products. Our data indicated also circRNA expression differences among molecular subgroups of JMML. Validation of a set of deregulated circRNAs in an independent cohort of JMML patients confirmed the down-regulation of circOXNAD1 and circATM, and a marked up-regulation of circLYN, circAFF2, and circMCTP1. A new finding in JMML links up-regulated circMCTP1 with known tumor suppressor miRNAs. This and other predicted interactions with miRNAs connect dysregulated circRNAs to regulatory networks. In conclusion, this study provides insight into the circRNAome of JMML and paves the path to elucidate new molecular disease mechanisms putting forward circMCTP1 up-regulation as a robust example
    corecore