292 research outputs found
Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile
Discrete numerical simulations are performed to study the evolution of the
micro-structure and the response of a granular packing during successive
loading-unloading cycles, consisting of quasi-static rotations in the gravity
field between opposite inclination angles. We show that internal variables,
e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due
to the exploration of different metastable configurations. Interestingly, the
hysteretic behaviour of the pile strongly depends on the maximal inclination of
the cycles, giving evidence of the irreversible modifications of the pile state
occurring close to the unjamming transition. More specifically, we show that
for cycles with maximal inclination larger than the repose angle, the weak
contact network carries the memory of the unjamming transition. These results
demonstrate the relevance of a two-phases description -strong and weak contact
networks- for a granular system, as soon as it has approached the unjamming
transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.
Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings
Granular packings slowly driven towards their instability threshold are
studied using a digital imaging technique as well as a nonlinear acoustic
method. The former method allows us to study grain rearrangements on the
surface during the tilting and the latter enables to selectively probe the
modifications of the weak-contact fraction in the material bulk. Gradual ageing
of both the surface activity and the weak-contact reconfigurations is observed
as a result of repeated tilt cycles up to a given angle smaller than the angle
of avalanche. For an aged configuration reached after several consecutive tilt
cycles, abrupt resumption of the on-surface activity and of the weak-contact
rearrangements occurs when the packing is subsequently inclined beyond the
previous maximal tilting angle. This behavior is compared with literature
results from numerical simulations of inclined 2D packings. It is also found
that the aged weak-contact configurations exhibit spontaneous restoration
towards the initial state if the packing remains at rest for tens of minutes.
When the packing is titled forth and back between zero and near-critical
angles, instead of ageing, the weak-contact configuration exhibits "internal
weak-contact avalanches" in the vicinity of both the near-critical and zero
angles. By contrast, the stronger-contact skeleton remains stable
Kuksa*: Self-Adaptive Microservices in Automotive Systems
In pervasive dynamic environments, vehicles connect to other objects to send
operational data and receive updates so that vehicular applications can provide
services to users on demand. Automotive systems should be self-adaptive,
thereby they can make real-time decisions based on changing operating
conditions. Emerging modern solutions, such as microservices could improve
self-adaptation capabilities and ensure higher levels of quality performance in
many domains. We employed a real-world automotive platform called Eclipse Kuksa
to propose a framework based on microservices architecture to enhance the
self-adaptation capabilities of automotive systems for runtime data analysis.
To evaluate the designed solution, we conducted an experiment in an automotive
laboratory setting where our solution was implemented as a microservice-based
adaptation engine and integrated with other Eclipse Kuksa components. The
results of our study indicate the importance of design trade-offs for quality
requirements' satisfaction levels of each microservices and the whole system
for the optimal performance of an adaptive system at runtime
Effect of 6-months of physical exercise on the nitrate/nitrite levels in hypertensive postmenopausal women
<p>Abstract</p> <p>Background</p> <p>Evidences have showed that the incidence of arterial hypertension is greater in postmenopausal women as compared to premenopausal. Physical inactivity has been implicated as a major contributor to weight gain and abdominal obesity in postmenopausal women and the incidence of cardiovascular disease increases dramatically after menopause. Additionally, more women than men die each year of coronary heart disease and are twice as likely as men to die within the first year after a heart attack. A healthy lifestyle has been strongly associated with the regular physical activity and evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Nitric oxide (NO) produced by endothelial cells has been implicated in this beneficial effect with improvement of vascular relaxing and reduction in blood pressure in both laboratory animals and human. Although the effect of exercise training in the human cardiovascular system has been largely studied, the majority of these studies were predominantly conducted in men or young volunteers. Therefore, the aim of this work was to investigate the effects of 6 months of dynamic exercise training (ET) on blood pressure and plasma nitrate/nitrite concentration (NOx<sup>-</sup>) in hypertensive postmenopausal women.</p> <p>Methods</p> <p>Eleven volunteers were submitted to the ET consisting in 3 days a week, each session of 60 minutes during 6 months at moderate intensity (50% of heart rate reserve). Anthropometric parameters, blood pressure, NOx<sup>- </sup>concentration were measured at initial time and after ET.</p> <p>Results</p> <p>A significant reduction in both systolic and diastolic blood pressure values was seen after ET which was accompanied by markedly increase of NOx<sup>- </sup>levels (basal: 10 Β± 0.9; ET: 16 Β± 2 ΞΌM). Total cholesterol was significantly reduced (basal: 220 Β± 38 and ET: 178 Β± 22 mg/dl), whereas triglycerides levels were not modified after ET (basal: 141 Β± 89 and ET: 147 Β± 8 mg/dl).</p> <p>Conclusion</p> <p>Our study shows that changing in lifestyle promotes reduction of arterial pressure which was accompanied by increase in nitrite/nitrate concentration. Therefore, 6-months of exercise training are an important approach in management arterial hypertension and play a protective effect in postmenopausal women.</p
Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects
BACKGROUND: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE: Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue
Bone Marrow Mononuclear Cells Up-Regulate Toll-Like Receptor Expression and Produce Inflammatory Mediators in Response to Cigarette Smoke Extract
Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE) on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs) from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-ΞΊB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-Ξ²1 production, which was dependent on NF-ΞΊB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-Ξ±, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-ΞΊB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-ΞΊB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation
Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group
<p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p
- β¦