205 research outputs found

    Navigability of temporal networks in hyperbolic space

    Get PDF
    Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remain largely unexplored. Here, we analyze the navigability of real networks by using greedy routing in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. We find that such dynamics enhances navigability with respect to the static case. Interestingly, there exists an optimal intermediate activation value, which ensures the best trade-off between the increase in the number of successful paths and a limited growth of their length. Contrary to expectations, the enhanced navigability is robust even when the most connected nodes inactivate with very high probability. Finally, our results indicate that some real networks are ultranavigable and remain highly navigable even if the network structure is extremely unsteady. These findings have important implications for the design and evaluation of efficient routing protocols that account for the temporal nature of real complex networks.Comment: 10 pages, 4 figures. Includes Supplemental Informatio

    Robust modeling of human contact networks across different scales and proximity-sensing techniques

    Full text link
    The problem of mapping human close-range proximity networks has been tackled using a variety of technical approaches. Wearable electronic devices, in particular, have proven to be particularly successful in a variety of settings relevant for research in social science, complex networks and infectious diseases dynamics. Each device and technology used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with specific biases on the close-range relations it records. Hence it is important to assess which statistical features of the empirical proximity networks are robust across different measurement techniques, and which modeling frameworks generalize well across empirical data. Here we compare time-resolved proximity networks recorded in different experimental settings and show that some important statistical features are robust across all settings considered. The observed universality calls for a simplified modeling approach. We show that one such simple model is indeed able to reproduce the main statistical distributions characterizing the empirical temporal networks

    The interconnected wealth of nations: Shock propagation on global trade-investment multiplex networks

    Get PDF
    The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propagation on the global trade-investment multiplex network. To this aim, we propose a model that couples a Susceptible-Infected-Recovered epidemic spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country. At the local level, we find that the interplay between trade and financial interactions influences the vulnerabilities of countries to shocks. At the large scale, we find a simple linear relation between the relative magnitude of a shock in a country and its global impact on the whole economic system, albeit the strength of internal contagion is country-dependent and the intercountry propagation dynamics is non-linear. Interestingly, this systemic impact can be predicted on the basis of intra-layer and inter-layer scale factors that we name network multipliers, that are independent of the magnitude of the initial shock. Our model sets-up a quantitative framework to stress-test the robustness of individual countries and of the world economy to propagating crashes

    Prediction of new scientific collaborations through multiplex networks

    Get PDF
    The establishment of new collaborations among scientists fertilizes the scientific environment, fostering novel discoveries. Understanding the dynamics driving the development of scientific collaborations is thus crucial to characterize the structure and evolution of science. In this work, we leverage the information included in publication records and reconstruct a categorical multiplex networks to improve the prediction of new scientific collaborations. Specifically, we merge different bibliographic sources to quantify the prediction potential of scientific credit, represented by citations, and common interests, measured by the usage of common keywords. We compare several link prediction algorithms based on different dyadic and triadic interactions among scientists, including a recently proposed metric that fully exploits the multiplex representation of scientific networks. Our work paves the way for a deeper understanding of the dynamics driving scientific collaborations, and validates a new algorithm that can be readily applied to link prediction in systems represented as multiplex networks. © 2021, The Author(s)

    Flocking-Enhanced social contagion

    Get PDF
    Populations of mobile agents animal groups, robot swarms, or crowds of people self-organize into a large diversity of states as a result of information exchanges with their surroundings. While in many situations of interest the motion of the agents is driven by the transmission of information from neighboring peers, previous modeling efforts have overlooked the feedback between motion and information spreading. Here we show that such a feedback results in contagion enhanced by flocking. We introduce a reference model in which agents carry an internal state whose dynamics is governed by the susceptible-infected-susceptible (SIS) epidemic process, characterizing the spread of information in the population and affecting the way they move in space. This feedback triggers flocking, which is able to foster social contagion by reducing the epidemic threshold with respect to the limit in which agents interact globally. The velocity of the agents controls both the epidemic threshold and the emergence of complex spatial structures, or swarms. By bridging together soft active matter physics and modeling of social dynamics, we shed light upon a positive feedback mechanism driving the self-organization of mobile agents in complex systems

    Modeling echo chambers and polarization dynamics in social networks

    Full text link
    Echo chambers and opinion polarization recently quantified in several sociopolitical contexts and across different social media, raise concerns on their potential impact on the spread of misinformation and on openness of debates. Despite increasing efforts, the dynamics leading to the emergence of these phenomena stay unclear. We propose a model that introduces the dynamics of radicalization, as a reinforcing mechanism driving the evolution to extreme opinions from moderate initial conditions. Inspired by empirical findings on social interaction dynamics, we consider agents characterized by heterogeneous activities and homophily. We show that the transition between a global consensus and emerging radicalized states is mostly governed by social influence and by the controversialness of the topic discussed. Compared with empirical data of polarized debates on Twitter, the model qualitatively reproduces the observed relation between users' engagement and opinions, as well as opinion segregation in the interaction network. Our findings shed light on the mechanisms that may lie at the core of the emergence of echo chambers and polarization in social media

    Emergence of polarized ideological opinions in multidimensional topic spaces

    Get PDF
    Opinion polarization is on the rise, causing concerns for the openness of public debates. Additionally, extreme opinions on different topics often show significant correlations. The dynamics leading to these polarized ideological opinions pose a challenge: How can such correlations emerge, without assuming them a priori in the individual preferences or in a preexisting social structure? Here we propose a simple model that qualitatively reproduces ideological opinion states found in survey data, even between rather unrelated, but sufficiently controversial, topics. Inspired by skew coordinate systems recently proposed in natural language processing models, we solidify these intuitions in a formalism of opinions unfolding in a multidimensional space where topics form a non-orthogonal basis. Opinions evolve according to the social interactions among the agents, which are ruled by homophily: two agents sharing similar opinions are more likely to interact. The model features phase transitions between a global consensus, opinion polarization, and ideological states. Interestingly, the ideological phase emerges by relaxing the assumption of an orthogonal basis of the topic space, i.e. if topics thematically overlap. Furthermore, we analytically and numerically show that these transitions are driven by the controversialness of the topics discussed, the more controversial the topics, the more likely are opinion to be correlated. Our findings shed light upon the mechanisms driving the emergence of ideology in the formation of opinions.Comment: 30 pages, 21 figure

    Ceramic production and raw materials in the Tuscan-Ligurian region: an archaeological and petrographic approach in a diachronic perspective

    Get PDF
    This contribute focuses on the history of ceramic production of a large geographic area from the archaeological point of view encompassing Liguria and N-W Tuscany and using a petro-archaeometrical approach ( essentially based on thin-section analyses of more than a thousand of samples)

    A Markov model for inferring flows in directed contact networks

    Full text link
    Directed contact networks (DCNs) are a particularly flexible and convenient class of temporal networks, useful for modeling and analyzing the transfer of discrete quantities in communications, transportation, epidemiology, etc. Transfers modeled by contacts typically underlie flows that associate multiple contacts based on their spatiotemporal relationships. To infer these flows, we introduce a simple inhomogeneous Markov model associated to a DCN and show how it can be effectively used for data reduction and anomaly detection through an example of kernel-level information transfers within a computer.Comment: 12 page
    • 

    corecore