55 research outputs found
Effects of postmortem calcium chloride injection on meat palatability traits of strip loin steaks from cattle supplemented with or without zilpaterol hydrochloride
An experiment was conducted to determine the effects of zilpaterol hydrochloride mM supplementation (ZH; 8.3 mg/kg on a DM basis for 20 d) and calcium chloride injection [CaCl2, 200 at 5% (wt/wt) at 72 h postmortem] on palatability traits of beef (Bos taurus) strip loin steaks. Select (USDA) strip loins were obtained from control (no ZH = 19) and ZH-supplemented carcasses (n = 20). Right and left sides were selected alternatively to serve as a control (no INJ) or CaCl2-injected (INJ) and stored at 4 degrees C Before injecting the subprimals (72 h postmortem), 2 steaks were cut for proximate, sarcomere length, and myofibrillar fragmentation index (MFI) analyses. At 7 d postmortem each strip loin was portioned into steaks, vacuum packaged, and aged for the appropriate period for Warner-Bratzler shear force (WBSF; 7, 14, 21, and 28 d postmortem), trained sensory analysis (14 and 21 d postmortem), purge loss (7 d), and MFI (3, 7, 14, 21, and 28 d postmortem). Results indicated steaks from both ZH supplementation and INJ had reduced WBSF values as days of postmortem aging increased. The WBSF values of ZH steaks were greater (P 0.05) due to ZH at 14, 21, or 28 d or due to INJ at any aging period. Trained panelists rated tenderness less in ZH steaks than steaks with no ZH at 14 d and 21 d. However, INJ improved (P < 0.05) the tenderness ratings and flavor intensity of the trained panelists, compared with their non-injected cohorts at 21 d. Zilpaterol hydrochloride supplementation reduced (P < 0.05) MFI values, but INJ resulted in greater (P < 0.05) MFI values compared with no INJ. Subprimals from ZH and INJ showed greater purge loss (P < 0.05). Although no interactions were found with ZH and CaCl2, injecting USDA Select strip loins from ZH-fed cattle can help reduce the normal WBSF variation as it does in steaks from non-ZH-fed cattle.90103584359
Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs),
such as eicosapentaenoic acid (EPA, 20:5n-3) and
docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow
subset of marine γ-proteobacteria. The genes responsible for de
novo bacterial PUFA biosynthesis, designated
pfaEABCD, encode large, multi-domain protein complexes akin
to type I iterative fatty acid and polyketide synthases, herein referred to as
“Pfa synthases”. In addition to the archetypal Pfa synthase gene
products from marine bacteria, we have identified homologous type I FAS/PKS gene
clusters in diverse microbial lineages spanning 45 genera representing 10 phyla,
presumed to be involved in long-chain fatty acid biosynthesis. In total, 20
distinct types of gene clusters were identified. Collectively, we propose the
designation of “secondary lipids” to describe these
biosynthetic pathways and products, a proposition consistent with the
“secondary metabolite” vernacular. Phylogenomic analysis reveals a
high degree of functional conservation within distinct biosynthetic pathways.
Incongruence between secondary lipid synthase functional clades and taxonomic
group membership combined with the lack of orthologous gene clusters in closely
related strains suggests horizontal gene transfer has contributed to the
dissemination of specialized lipid biosynthetic activities across disparate
microbial lineages
Circulating microRNAs as biomarkers for detection of autologous blood transfusion.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion
- …