29 research outputs found

    Superhumps in Cataclysmic Binaries. XXII. 1RXS J232953.9+062814

    Full text link
    We report photometry of 1RXS J232953.9+062814, a recently discovered dwarf nova with a remarkably short 64.2-minute orbital period. In quiescence, the star's light curve is that of a double sinusoid, arising from the "ellipsoidal" distortion of the Roche-lobe-filling secondary. During superoutburst, common superhumps develop with a period 3-4% longer than P_orb. This indicates a mass ratio M_2/M_1=0.19+-0.02, a surprisingly large value in so compact a binary. This implies that the secondary star has a density 2-3 times higher than that of other short-period dwarf novae, suggesting a secondary enriched by H-burning prior to the common-envelope phase of evolution. We estimate i=50+-5 deg, M_1=0.63 (+0.12, -0.09) M_sol, M_2=0.12 (+0.03, -0.02) M_sol, R_2=0.121 (+0.010, -0.007) R_sol, and a distance to the binary of 180+-40 pc.Comment: PDF, 17 pages, 3 tables, 5 figures; accepted, in press, to appear June 2002, PASP; more info at http://cba.phys.columbia.edu

    Planetary Transits of the Trans-Atlantic Exoplanet Survey- Candidate TrES-1b

    Full text link
    The AAVSO compiled 10,560 CCD observations of the suspected exoplanet transit object TrES-1b covering seven complete transit windows, three windows of partial coverage, and coverage of baseline non-transit periods. Visual inspection of the light curves reveals the presence of slight humps at the egress points of some transits. A boot strap Monte Carlo simulation was applied to the data to confirm that the humps exist to a statistically significant degree. However, it does not rule out systemic effects which will be tested with campaigns in the 2005 observing season

    IM Normae: The Death Spiral of a Cataclysmic Variable?

    Full text link
    We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad "eclipses" recur with a 2.46 hour period, which increases on a timescale of 1.28(16)x10^6 years. Under the assumption of conservative mass-transfer, this suggests a rate near 10^-7 M_sol/year, and this agrees with the estimated /accretion/ rate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves which suggest strong heating of the low-mass secondary, and very wide orbital minima which suggest obscuration of a large "corona" around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova -- and cataclysmic-variable -- evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.Comment: PDF, 30 pages, 3 tables, 6 figures; accepted, in press, ApJ; more info at http://cbastro.org

    The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Get PDF
    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass planets on circular orbits.Comment: ApJ, in press [13 pg

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    Full text link
    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evolutionary stage with a longer superhump period, middle stage with systematically varying periods, final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods less than 0.08 d show positive period derivatives. Contrary to the earlier claim, we found no clear evidence for variation of period derivatives between superoutburst of the same object. We present an interpretation that the lengthening of the superhump period is a result of outward propagation of the eccentricity wave and is limited by the radius near the tidal truncation. We interpret that late stage superhumps are rejuvenized excitation of 3:1 resonance when the superhumps in the outer disk is effectively quenched. Many of WZ Sge-type dwarf novae showed long-enduring superhumps during the post-superoutburst stage having periods longer than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently, mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives and are excellent candidate for the systems around or after the period minimum of evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
    corecore