13,064 research outputs found
The effect of internal gravity waves on cloud evolution in sub-stellar atmospheres
Context. Sub-stellar objects exhibit photometric variability which is believed to be caused by a number of processes such as magnetically-driven spots or inhomogeneous cloud coverage. Recent sub-stellar models have shown that turbulent flows and waves, including internal gravity waves, may play an important role in cloud evolution.Aims. The aim of this paper is to investigate the effect of internal gravity waves on dust cloud nucleation and dust growth, and whether observations of the resulting cloud structures could be used to recover atmospheric density information.Methods. For a simplified atmosphere in two dimensions, we numerically solve the governing fluid equations to simulate the effect on dust nucleation and mantle growth as a result of the passage of an internal gravity wave. Furthermore, we derive an expression that relates the properties of the wave-induced cloud structures to observable parameters in order to deduce the atmospheric density.Results. Numerical simulations show that the density, pressure and temperature variations caused by gravity waves lead to an increase of dust nucleation by up to a factor 20, and dust mantle growth rate by up to a factor 1:6, compared to their equilibrium values. Through an exploration of the wider sub-stellar parameter space, we show that in absolute terms, the increase in dust nucleation due to internal gravity waves is stronger in cooler (T dwarfs) and TiO2-rich sub-stellar atmospheres. The relative increase however is greater in warm(L dwarf) and TiO2-poor atmospheres due to conditions less suited for efficient nucleation at equilibrium. These variations lead to banded areas in which dust formation is much more pronounced, and lead to banded cloud structures similar to those observed on Earth. Conclusions. Using the proposed method, potential observations of banded clouds could be used to estimate the atmospheric density of sub-stellar objects
Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges
By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V
Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order
Particles dispersed in a liquid crystal above the nematic-isotropic phase
transition are wetted by a surface-induced corona of paranematic order. Such
coronas give rise to pronounced two-particle interactions. In this article, we
report details on the analytical and numerical study of these interactions
published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially
demonstrate how for large particle separations the asymptotic form of a Yukawa
potential arises. We show that the Yukawa potential is a surprisingly good
description for the two-particle interactions down to distances of the order of
the nematic coherence length. Based on this fact, we extend earlier studies on
a temperature induced flocculation transition in electrostatically stabilized
colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa
potential to establish a flocculation diagram for a much larger range of the
electrostatic parameters, namely the surface charge density and the Debye
screening length. As a new feature, a kinetically stabilized dispersion close
to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for
publication in Phys. Rev.
Resonant Energy Transfer From Argon Dimers to Atomic Oxygen in Microhollow Cathode Discharges
The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes
Excitation of the odd-parity quasi-normal modes of compact objects
The gravitational radiation generated by a particle in a close unbounded
orbit around a neutron star is computed as a means to study the importance of
the modes of the neutron star. For simplicity, attention is restricted to
odd parity (``axial'') modes which do not couple to the neutron star's fluid
modes. We find that for realistic neutron star models, particles in unbounded
orbits only weakly excite the modes; we conjecture that this is also the
case for astrophysically interesting sources of neutron star perturbations. We
also find that for cases in which there is significant excitation of quadrupole
modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.
Inactivation of the Na,K-ATPase by radiation-induced free radicals Evidence for a radical-chain mechanism
AbstractFree radicals produced by water radiolysis were used to study the inactivation of the enzymatic activity of the Na,K-ATPase. A decrease of the activity to virtually zero with a mono-exponential dependence on the radiation dose was observed. The inactivation process is initiated by hydroxyl radicals. This was shown by the effect of appropriate radical scavengers such as t-butanol, formate and vitamin C. In all cases a significant increase in the characteristic D37 dose of inactivation was observed. Inactivation was found to show a so-called inverse dose-rate effect, i.e, the sensitivity of the enzyme to radical attack is increased if the dose rate is reduced. The data were found to agree with the relationship 1/D371̃/D1/2, which is known to be a strong indicator of a radical chain mechanism. This means that the inactivation, after initiation by single radicals, is amplified by a subsequent chain mechanism
The Fueling Diagram: Linking Galaxy Molecular-to-Atomic Gas Ratios to Interactions and Accretion
To assess how external factors such as local interactions and fresh gas
accretion influence the global ISM of galaxies, we analyze the relationship
between recent enhancements of central star formation and total
molecular-to-atomic (H2/HI) gas ratios, using a broad sample of field galaxies
spanning early-to-late type morphologies, stellar masses of 10^(7.2-11.2) Msun,
and diverse stages of evolution. We find that galaxies occupy several loci in a
"fueling diagram" that plots H2/HI vs. mass-corrected blue-centeredness, a
metric tracing the degree to which galaxies have bluer centers than the average
galaxy at their stellar mass. Spiral galaxies show a positive correlation
between H2/HI and mass-corrected blue-centeredness. When combined with previous
results linking mass-corrected blue-centeredness to external perturbations,
this correlation suggests a link between local galaxy interactions and
molecular gas inflow/replenishment. Intriguingly, E/S0 galaxies show a more
complex picture: some follow the same correlation, some are quenched, and a
distinct population of blue-sequence E/S0 galaxies (with masses below key
transitions in gas richness) defines a separate loop in the fueling diagram.
This population appears to be composed of low-mass merger remnants currently in
late- or post-starburst states, in which the burst first consumes the H2 while
the galaxy center keeps getting bluer, then exhausts the H2, at which point the
burst population reddens as it ages. Multiple lines of evidence suggest
connected evolutionary sequences in the fueling diagram. In particular,
tracking total gas-to-stellar mass ratios within the diagram provides evidence
of fresh gas accretion onto low-mass E/S0s emerging from central starbursts.
Drawing on a comprehensive literature search, we suggest that virtually all
galaxies follow the same evolutionary patterns found in our broad sample.Comment: 24 pages, 11 figures (table 4 available at
http://user.physics.unc.edu/~dstark/table4_csv.txt), accepted for publication
in Ap
Application of PLM processes to respond to mechanical SMEs needs
International audiencePLM is today a reality for mechanical SMEs. Some companies implement PLM systems very well but others have more difficulties. This paper aims to explain why some SMEs do not success to integrated PLM systems analyzing the needs of mechanical SMEs, the processes to implement to respond to those needs and the actual PLM software functionalities. The proposition of a typology of those companies and the responses of those needs by PLM processes will be explain through the applications of a demonstrator applying appropriate generic data model and modelling framework
Web-based language production experiments: Semantic interference assessment is robust for spoken and typed response modalities
For experimental research on language production, temporal precision and high quality of the recorded audio files are imperative. These requirements are a considerable challenge if language production is to be investigated online. However, online research has huge potential in terms of efficiency, ecological validity and diversity of study populations in psycholinguistic and related research, also beyond the current situation. Here, we supply confirmatory evidence that language production can be investigated online and that reaction time (RT) distributions and error rates are similar in written naming responses (using the keyboard) and typical overt spoken responses. To assess semantic interference effects in both modalities, we performed two pre-registered experiments (n = 30 each) in online settings using the participants' web browsers. A cumulative semantic interference (CSI) paradigm was employed that required naming several exemplars of semantic categories within a seemingly unrelated sequence of objects. RT is expected to increase linearly for each additional exemplar of a category. In Experiment 1, CSI effects in naming times described in lab-based studies were replicated. In Experiment 2, the responses were typed on participants' computer keyboards, and the first correct key press was used for RT analysis. This novel response assessment yielded a qualitatively similar, very robust CSI effect. Besides technical ease of application, collecting typewritten responses and automatic data preprocessing substantially reduce the work load for language production research. Results of both experiments open new perspectives for research on RT effects in language experiments across a wide range of contexts. JavaScript- and R-based implementations for data collection and processing are available for download
- …