3,279 research outputs found

    A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization

    Get PDF
    We present a new measurement of the integrated stellar mass per comoving volume at redshift 5 determined via spectral energy fitting drawn from a sample of 214 photometrically-selected galaxies with z'<26.5 in the southern GOODS field. Following procedures introduced by Eyles et al. (2005), we estimate stellar masses for various sub-samples for which reliable and unconfused Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most luminous sources with =4.92 provides a firm lower limit to the stellar mass density of 1e6 Msun/Mpc^3. Several galaxies in this sub-sample have masses of order 10^11 Msun implying significant earlier activity occurred in massive systems. We then consider a larger sample whose photometric redshifts in the publicly-available GOODS-MUSIC catalog lie in the range 4.4 <z 5.6. Before adopting the GOODS-MUSIC photometric redshifts, we check the accuracy of their photometry and explore the possibility of contamination by low-z galaxies and low-mass stars. After excising probable stellar contaminants and using the z'-J color to exclude any remaining foreground red galaxies, we conclude that 196 sources are likely to be at z~5. The implied mass density from the unconfused IRAC fraction of this sample, scaled to the total available, is 6e6 Msun/Mpc^3. We discuss the uncertainties as well as the likelihood that we have underestimated the true mass density. Including fainter and quiescent sources the total integrated density could be as high as 1e7 Msun/Mpc^3. Using the currently available (but highly uncertain) rate of decline in the star formationhistory over 5 <z< 10, a better fit is obtained for the assembled mass at z~5 if we admit significant dust extinction at early times or extend the luminosity function to very faint limits. [abridged]Comment: Accepted for Publication in ApJ, 39 page

    Keck Spectroscopy of Faint 3<z<8 Lyman Break Galaxies:- Evidence for a Declining Fraction of Emission Line Sources In the Redshift Range 6<z<8

    Get PDF
    Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with WFC3/IR onboard the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star forming galaxies with detectable Lyman alpha emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of LRIS and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5-sigma sensitivity of < 50 A for the rest-frame equivalent width (EW) of Lyman alpha emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only 2 convincing and 1 possible line emitter in our more distant sample. Combining with published data on a further 7 sources obtained using FORS2 on the ESO VLT, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Lyman alpha fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Lyman alpha EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral.Comment: 8 pages, 5 figures, Accepted to ApJ 10/1/1

    Spectroscopy of CASSOWARY gravitationally-lensed galaxies in SDSS: characterisation of an extremely bright reionization-era analog at z=1.42z=1.42

    Get PDF
    We present new observations of sixteen bright (r=19−21r=19-21) gravitationally lensed galaxies at z≃1−3z\simeq 1-3 selected from the CASSOWARY survey. Included in our sample is the z=1.42z=1.42 galaxy CSWA-141, one of the brightest known reionization-era analogs at high redshift (g=20.5), with a large sSFR (31.2 Gyr−1^{-1}) and an [OIII]+HÎČ\beta equivalent width (EW[OIII]+HÎČ_{\rm{[OIII]+H\beta}}=730~\r{A}) that is nearly identical to the average value expected at z≃7−8z\simeq 7-8. In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong CIII] emission. Whereas most of the sources in our sample show weak UV line emission, we find elevated CIII] in the spectrum of CSWA-141 (EWCIII]_{\rm{CIII]}}=4.6±1.9\pm1.9~\r{A}) together with detections of other prominent emission lines (OIII], Si III], Fe II⋆^\star, Mg II). We compare the rest-optical line properties of high redshift galaxies with strong and weak CIII] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed investigation of the extreme emission line galaxies which become common at z>6z>6. We find that gas traced by the CIII] doublet likely probes higher densities than that traced by [OII] and [SII]. Characterisation of the spectrally resolved Mg II emission line and several low ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.Comment: 20 pages, 9 figures, Accepted for publication in MNRA

    Spitzer and Hubble Constraints on the Physical Properties of the z~7 Galaxy Strongly Lensed by Abell 2218

    Full text link
    We report the detection of a z~7 galaxy strongly lensed by the massive galaxy cluster Abell 2218 (z=0.175) at 3.6 and 4.5 um using the Spitzer Observatory and at 1.1 um using the Hubble Space Telescope. The new data indicate a refined photometric redshift in the range of 6.6-6.8 depending on the presence of Ly-alpha emission. The spectral energy distribution is consistent with having a significant Balmer break, suggesting that the galaxy is in the poststarburst stage with an age of at least ~50 Myr and quite possibly a few hundred Myr. This suggests the possibility that a mature stellar population is already in place at such a high redshift. Compared with typical Lyman break galaxies at z~3-4, the stellar mass is an order of magnitude smaller (~10^{9} Msun), but the specific star formation rate (star formation rate/M_{star}) is similarly large (> 10^{-9} yr^{-1}), indicating equally vigorous star-forming activity.Comment: 11 pages, 2 figures, 2 tables; Accepted for publication in ApJ

    Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF

    Get PDF
    We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitting to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.Comment: 25 Pages, Accepted for publication in MNRA

    Lyα and C III] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems?

    Get PDF
    We discuss new Keck/MOSFIRE spectroscopic observations of four luminous galaxies at z ≃ 7–9 selected to have intense optical line emission by Roberts-Borsani et al. Previous follow-up has revealed Lyα in two of the four galaxies. Our new MOSFIRE observations confirm that Lyα is present in the entire sample. We detect Lyα emission in the galaxy COS-zs7-1, confirming its redshift as zLyα = 7.154, and we detect Lyα in EGS-zs8-2 at zLyα = 7.477, verifying an earlier tentative detection. The ubiquity of Lyα in this sample is puzzling given that the IGM is expected to be significantly neutral over 7 7 is expected to be strongly luminosity-dependent, with transmission accelerated in systems with intense star formation

    High Scale Physics Connection to LHC Data

    Full text link
    The existing data appears to provide hints of an underlying high scale theory. These arise from the gauge coupling unification, from the smallness of the neutrino masses, and via a non-vanishing muon anomaly. An overview of high scale models is given with a view to possible tests at the Large Hadron Collider. Specifically we discuss here some generic approaches to deciphering their signatures. We also consider an out of the box possibility of a four generation model where the fourth generation is a mirror generation rather than a sequential generation. Such a scenario can lead to some remarkably distinct signatures at the LHC.Comment: 23 pages, no figures. Based on invited lectures at the 46th Course at the International School of Subnuclear Physics- Erice -Sicily: 29 August -7 September, 200

    An Observational Test for the Anthropic Origin of the Cosmological Constant

    Full text link
    The existence of multiple regions of space beyond the observable Universe (within the so-called "multiverse") where the vacuum energy density takes different values, has been postulated as an explanation for the low non-zero value observed for it in our Universe. It is often argued that our existence pre-selects regions where the cosmological constant is sufficiently small to allow galaxies like the Milky Way to form and intelligent life to emerge. Here we propose a simple empirical test for this anthropic argument within the boundaries of the observable Universe. We make use of the fact that dwarf galaxies formed in our Universe at redshifts as high as z~10 when the mean matter density was larger by a factor of ~10^3 than today. Existing technology enables to check whether planets form in nearby dwarf galaxies and globular clusters by searching for microlensing or transit events of background stars. The oldest of these nearby systems may have formed at z~10. If planets are as common per stellar mass in these descendents as they are in the Milky Way galaxy, then the anthropic argument would be weakened considerably since planets could have formed in our Universe even if the cosmological constant was three orders of magnitude larger than observed. For a flat probability distribution, this would imply that the probability for us to reside in a region where the cosmological constant obtains its observed value is lower than \~10^{-3}. A precise version of the anthropic argument could then be ruled-out at a confidence level of ~99.9%, which constitutes a satisfactory measure of a good experimental test.Comment: JCAP, in pres
    • 

    corecore