14,725 research outputs found

    Endless tape cartridge Patent

    Get PDF
    Tape cartridge with high capacity storage of endless-loop magnetic tap

    Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    Full text link
    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence

    The effect of internal gravity waves on cloud evolution in sub-stellar atmospheres

    Get PDF
    Context. Sub-stellar objects exhibit photometric variability which is believed to be caused by a number of processes such as magnetically-driven spots or inhomogeneous cloud coverage. Recent sub-stellar models have shown that turbulent flows and waves, including internal gravity waves, may play an important role in cloud evolution.Aims. The aim of this paper is to investigate the effect of internal gravity waves on dust cloud nucleation and dust growth, and whether observations of the resulting cloud structures could be used to recover atmospheric density information.Methods. For a simplified atmosphere in two dimensions, we numerically solve the governing fluid equations to simulate the effect on dust nucleation and mantle growth as a result of the passage of an internal gravity wave. Furthermore, we derive an expression that relates the properties of the wave-induced cloud structures to observable parameters in order to deduce the atmospheric density.Results. Numerical simulations show that the density, pressure and temperature variations caused by gravity waves lead to an increase of dust nucleation by up to a factor 20, and dust mantle growth rate by up to a factor 1:6, compared to their equilibrium values. Through an exploration of the wider sub-stellar parameter space, we show that in absolute terms, the increase in dust nucleation due to internal gravity waves is stronger in cooler (T dwarfs) and TiO2-rich sub-stellar atmospheres. The relative increase however is greater in warm(L dwarf) and TiO2-poor atmospheres due to conditions less suited for efficient nucleation at equilibrium. These variations lead to banded areas in which dust formation is much more pronounced, and lead to banded cloud structures similar to those observed on Earth. Conclusions. Using the proposed method, potential observations of banded clouds could be used to estimate the atmospheric density of sub-stellar objects

    Cryogenic thermal control technology summaries

    Get PDF
    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.

    Large-Scale CO Maps of the Lupus Molecular Cloud Complex

    Full text link
    Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.Comment: 54 pages, 27 figures, 5 tables. To appear in ApJS. Preprint also available (with full-size figures) from http://www.astro.ex.ac.uk/people/nfht/publications.html Datacubes available from http://www.astro.ex.ac.uk/people/nfht/resources.htm

    Application of PLM processes to respond to mechanical SMEs needs

    Get PDF
    International audiencePLM is today a reality for mechanical SMEs. Some companies implement PLM systems very well but others have more difficulties. This paper aims to explain why some SMEs do not success to integrated PLM systems analyzing the needs of mechanical SMEs, the processes to implement to respond to those needs and the actual PLM software functionalities. The proposition of a typology of those companies and the responses of those needs by PLM processes will be explain through the applications of a demonstrator applying appropriate generic data model and modelling framework

    New allowed mSUGRA parameter space from variations of the trilinear scalar coupling A0

    Full text link
    In minimal Supergravity (mSUGRA) models the lightest supersymmetric particle (assumed to be the lightest neutralino) provides an excellent cold dark matter (CDM) candidate. The supersymmetric parameter space is significantly reduced, if the limits on the CDM relic density, obtained from WMAP data, are used. Assuming a vanishing trilinear scalar coupling A0 and fixed values of tan(beta), these limits result in narrow lines of allowed regions in the m0-m1/2 plane, the so called WMAP strips. In this analysis the trilinear coupling A0 has been varied within +/-4 TeV. A fixed non vanishing A0 value leads to a shift of the WMAP strips in the m0-m1/2 plane.Comment: Typos corrected, Fig.1. updated, references adde

    Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA

    Full text link
    We present the results of a systematic study using ASCA of the ionization state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B, W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray emission, which contrasts to shell-like radio morphology, a set of haracteristics at odds with the standard model of SNR evolution (e.g., the Sedov model). We have therefore studied the evolution of the MMSNRs from the ionization conditions inferred from the X-ray spectra, independent of X-ray morphology. We find highly ionized plasmas approaching ionization equilibrium in all the mmsnrs. The degree of ionization is systematically higher than the plasma usually seen in shell-like SNRs. Radial temperature gradients are also observed in five remnants, with cooler plasma toward the limb. In IC 443 and W49B, we find a plasma structure consistent with shell-like SNRs, suggesting that at least some MMSNRs have experienced similar evolution to shell-like SNRs. In addition to the results above, we have discovered an ``overionized'' ionization state in W49B, in addition to that previously found in IC 443. Thermal conduction can cause the hot interior plasma to become overionized by reducing the temperature and density gradients, leading to an interior density increase and temperature decrease. Therefore, we suggest that the ``center-filled'' X-ray morphology develops as the result of thermal conduction, and should arise in all SNRs. This is consistent with the results that MMSNRs are near collisional ionization equilibrium since the conduction timescale is roughly similar to the ionization timescale. Hence, we conclude that MMSNRs are those that have evolved over104\sim10^4 yr. We call this phase as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The Astrophysical Journa
    corecore