2,558 research outputs found

    Recent high pT measurements in STAR

    Full text link
    After five years of data taking, the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory provides precise measurements of particle production at high transverse momentum in p-p, d-Au, and Au-Au collisions at sqrt(s) = 200 GeV. We review recent results on the flavor dependence of high pT particle suppression and hadron particle spectra at sqrt(s) = 62.4 GeV. New results on two-particle angular correlations for identified trigger particles and for low momentum associated charged hadrons in p-p and Au-Au as well as near-side Δη\Delta\eta correlations will be presented and discussed.Comment: 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Calcutta. 8 pages, 10 figures, submitted to J. Phys. G: Nucl. Part. Phy

    Jets in Nuclear Collisions: Status and Perspective

    Full text link
    I review the status and future directions of jet-related measurements in high energy nuclear collisions and their application as a probe of QCD matter.Comment: Summary talk, Hard Probes 2004, Ericeira, Portugal, Nov. 4-10, 2004; 8 pages, 5 figures; v2 has minor correction

    Fluctuation and flow probes of early-time correlations in relativistic heavy ion collisions

    Full text link
    Fluctuation and correlation observables are often measured using multi-particle correlation methods and therefore mutually probe the origins of genuine correlations present in multi-particle distribution functions. We investigate the common influence of correlations arising from the spatially inhomogeneous initial state on multiplicity and momentum fluctuations as well as flow fluctuations. Although these observables reflect different aspects of the initial state, taken together, they can constrain a correlation scale set at the earliest moments of the collision. We calculate both the correlation scale in an initial stage Glasma flux tube picture and the modification to these correlations from later stage hydrodynamic flow and find quantitative agreement with experimental measurements over a range of collision systems and energies.Comment: Proceedings of the 28th Winter Workshop on Nuclear Dynamics, Dorado del Mar, Puerto Rico, April 7-14, 201

    Overview of the Status and Strangeness Capabilities of STAR

    Full text link
    STAR is a large acceptance spectrometer capable of precision measurements of a wide variety of strange particles. We discuss the STAR detector, its configuration during the first two years of RHIC operation, and its initial performance for Au+Au collisions. The expected performance for strangeness physics and initial data on strange particle reconstruction in Au+Au collisions are presented.Comment: Proceedings of the Fifth International Conference on Strangeness in Quark Matter, Berkeley, California, July 20-25, 200

    Open heavy flavor production at RHIC

    Get PDF
    The study of heavy flavor production in relativistic heavy ion collisions is an extreme experimental challenge but provides important information on the properties of the Quark-Gluon Plasma (QGP) created in Au+Au collisions at RHIC. Heavy-quarks are believed to be produced in the initial stages of the collision, and are essential on the understanding of parton energy loss in the dense medium created in such environment. Moreover, heavy-quarks can help to investigate fundamental properties of QCD in elementary p+p collisions. In this work we review recent results on heavy flavor production and their interaction with the hot and dense medium at RHIC.Comment: Quark Matter 2006 proceedings, 8 pages, 5 figure

    Particle dependence of elliptic flow in Au+Au collisions at sNN=\sqrt{s_{NN}}= 200 GeV

    Full text link
    The elliptic flow parameter (v2v_2) for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} has been measured at mid-rapidity in Au + Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV by the STAR collaboration. The v2v_2 values for both KS0K_S^{0} and Λ+Λˉ\Lambda+\bar{\Lambda} saturate at moderate pTp_T, deviating from the hydrodynamic behavior observed in the lower pTp_T region. The saturated v2v_2 values and the pTp_T scales where the deviation begins are particle dependent. The particle-type dependence of v2v_2 shows features expected from the hadronization of a partonic ellipsoid by coalescence of co-moving quarks. These results will be discussed in relation to the nuclear modification factor (RCPR_{CP}) which has also been measured for KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} by the STAR collaboration.Comment: 6 pages, 3 figures, Strange Quark Matter 2003 Conference (SQM 2003): updated with 2 figures from original talk that did not appear in the journa

    Test of Chemical freeze-out at RHIC

    Full text link
    We present the results of a systematic test applying statistical thermal model fits in a consistent way for different particle ratios, and different system sizes using the various particle yields measured in the STAR experiment. Comparison between central and peripheral Au+Au and Cu+Cu collisions with data from p+p collisions provides an interesting tool to verify the dependence with the system size. We also present a study of the rapidity dependence of the thermal fit parameters using available data from RHIC in the forward rapidity regions and also using different parameterization for the rapidity distribution of different particles.Comment: SQM2008 conference proceeding

    Strongly Intensive Measures for Multiplicity Fluctuations

    Full text link
    The recently proposed two families of strongly intensive measures of fluctuations and correlations are studied within Hadron-String-Dynamics (HSD) transport approach to nucleus-nucleus collisions. We consider the measures ΔKπ\Delta^{K\pi} and ΣKπ\Sigma^{K\pi} for kaon and pion multiplicities in Au+Au collisions in a wide range of collision energies and centralities. These strongly intensive measures appear to cancel the participant number fluctuations. This allows to enlarge the centrality window in the analysis of event-by-event fluctuations up to at least of 10% most central collisions. We also present a comparison of the HSD results with the data of NA49 and STAR collaborations. The HSD describes ΣKπ\Sigma^{K\pi} reasonably well. However, the HSD results depend monotonously on collision energy and do not reproduce the bump-deep structure of ΔKπ\Delta^{K\pi} observed from the NA49 data in the region of the center of mass energy of nucleon pair sNN=8÷12\sqrt{s_{NN}}= 8\div 12 GeV. This fact deserves further studies. The origin of this `structure' is not connected with simple geometrical or limited acceptance effects, as these effects are taken into account in the HSD simulations

    Novel Bose-Einstein Interference in the Passage of a Fast Particle in a Dense Medium

    Full text link
    When an energetic particle collides coherently with many medium particles at high energies, the Bose-Einstein symmetry with respect to the interchange of the exchanged virtual bosons leads to a destructive interference of the Feynman amplitudes in most regions of the phase space but a constructive interference in some other regions of the phase space. As a consequence, the recoiling medium particles have a tendency to come out collectively along the direction of the incident fast particle, each carrying a substantial fraction of the incident longitudinal momentum. Such an interference appearing as collective recoils of scatterers along the incident particle direction may have been observed in angular correlations of hadrons associated with a high-pTp_T trigger in high-energy AuAu collisions at RHIC.Comment: 10 pages, 2 figures, invited talk presented at the 35th Symposium on Nuclear Physics, Cocoyoc, Mexico, January 3, 2012, to be published in IOP Conference Serie

    Third Harmonic Flow of Charged Particles in Au+Au Collisions at sNN=200\sqrt {s_{NN}} = 200 GeV

    Full text link
    In this proceedings, we report measurements of the third harmonic coefficient of the azimuthal anisotropy, v3v_{3}, known as triangular flow. The analysis is for charged particles near midrapidity in Au+Au collisions at sNN\sqrt {s_{NN}} = 200 GeV, based on data from the STAR experiment at the Relativistic Heavy Ion Collider. Triangular flow as a function of centrality, pseudorapidity and transverse momentum are reported using various methods, including a study of the signal for particle pairs as a function of their pseudorapidity separation. Results are compared with other experiments and model predictions.Comment: Talk given by Yadav Pandit (For the STAR Collaboration) at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS): 10 pages, 8 figure
    • …
    corecore