765 research outputs found

    Search for Discrete Refractive Scattering Events

    Get PDF
    We have searched for discrete refractive scattering events (including effects due to possible non-multiple diffractive scattering) at meter wavelengths in the direction of two close by pulsars B0950+08 and B1929+10, where we looked for spectral signatures associated with the multiple imaging of pulsars due to scattering in the interstellar medium. We do not find any signatures of such events in the direction of either source over a spectral periodicity range of 50 KHz to 5 MHz. Our analysis puts strong upper limits on the column density contrast associated with a range of spatial scales of the interstellar electron density irregularities along these lines of sight.Comment: Accepted for publication in Astronomy & Astrophysic

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1

    The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    Full text link
    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap

    A search for radio pulsars and fast transients in M31 using the WSRT

    Get PDF
    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special configuration called 8gr8 (eight-grate) mode, which provides a large instantaneous field-of-view, about 5 square degrees per pointing, with good sensitivity, long dwell times (up to 8 hours per pointing), and good spatial resolution (a few arc minutes) for locating sources. We have searched for both periodicities and single pulses in our data, aiming to detect bright, persistent radio pulsars and rotating radio transients (RRATs) of either Galactic or extragalactic origin. Our searches did not reveal any confirmed periodic signals or bright single bursts from (potentially) cosmological distances. However, we do report the detection of several single pulse events, some repeating at the same dispersion measure, which could potentially originate from neutron stars in M31. One in particular was seen multiple times, including a burst of six pulses in 2000 seconds, at a dispersion measure of 54.7 pc cm^-3, which potentially places the origin of this source outside of our Galaxy. Our results are compared to a range of hypothetical populations of pulsars and RRATs in M31 and allow us to constrain the luminosity function of pulsars in M31. They also show that, unless the pulsar population in M31 is much dimmer than in our Galaxy, there is no need to invoke any violation of the inverse square law of the distance for pulsar fluxes.Comment: 18 pages, 14 figures, 8 tables. Accepted for publication in the main journal of MNRA

    Hellinger Distance Trees for Imbalanced Streams

    Get PDF
    Classifiers trained on data sets possessing an imbalanced class distribution are known to exhibit poor generalisation performance. This is known as the imbalanced learning problem. The problem becomes particularly acute when we consider incremental classifiers operating on imbalanced data streams, especially when the learning objective is rare class identification. As accuracy may provide a misleading impression of performance on imbalanced data, existing stream classifiers based on accuracy can suffer poor minority class performance on imbalanced streams, with the result being low minority class recall rates. In this paper we address this deficiency by proposing the use of the Hellinger distance measure, as a very fast decision tree split criterion. We demonstrate that by using Hellinger a statistically significant improvement in recall rates on imbalanced data streams can be achieved, with an acceptable increase in the false positive rate.Comment: 6 Pages, 2 figures, to be published in Proceedings 22nd International Conference on Pattern Recognition (ICPR) 201

    The glitch activity of neutron stars

    Full text link
    We present a statistical study of the glitch population and the behaviour of the glitch activity across the known population of neutron stars. An unbiased glitch database was put together based on systematic searches of radio timing data of 898 rotation-powered pulsars obtained with the Jodrell Bank and Parkes observatories. Glitches identified in similar searches of 5 magnetars were also included. The database contains 384 glitches found in the rotation of 141 of these neutron stars. We confirm that the glitch size distribution is at least bimodal, with one sharp peak at approximately 20μHz20\, \rm{\mu\,Hz}, which we call large glitches, and a broader distribution of smaller glitches. We also explored how the glitch activity ν˙g\dot{\nu}_{\rm{g}}, defined as the mean frequency increment per unit of time due to glitches, correlates with the spin frequency ν\nu, spin-down rate ν˙|\dot{\nu}|, and various combinations of these, such as energy loss rate, magnetic field, and spin-down age. It is found that the activity is insensitive to the magnetic field and that it correlates strongly with the energy loss rate, though magnetars deviate from the trend defined by the rotation-powered pulsars. However, we find that a constant ratio ν˙g/ν˙=0.010±0.001\dot\nu_{\rm{g}}/|\dot\nu| = 0.010 \pm 0.001 is consistent with the behaviour of all rotation-powered pulsars and magnetars. This relation is dominated by large glitches, which occur at a rate directly proportional to ν˙|\dot{\nu}|. The only exception are the rotation-powered pulsars with the highest values of ν˙|\dot{\nu}|, such as the Crab pulsar and PSR B0540-69, which exhibit a much smaller glitch activity, intrinsically different from each other and from the rest of the population. The activity due to small glitches also shows an increasing trend with ν˙|\dot\nu|, but this relation is biased by selection effects.Comment: Accepted for publication in A&

    Model-based asymptotically optimal dispersion measure correction for pulsar timing

    Full text link
    In order to reach the sensitivity required to detect gravitational waves, pulsar timing array experiments need to mitigate as much noise as possible in timing data. A dominant amount of noise is likely due to variations in the dispersion measure. To correct for such variations, we develop a statistical method inspired by the maximum likelihood estimator and optimal filtering. Our method consists of two major steps. First, the spectral index and amplitude of dispersion measure variations are measured via a time-domain spectral analysis. Second, the linear optimal filter is constructed based on the model parameters found in the first step, and is used to extract the dispersion measure variation waveforms. Compared to current existing methods, this method has better time resolution for the study of short timescale dispersion variations, and generally produces smaller errors in waveform estimations. This method can process irregularly sampled data without any interpolation because of its time-domain nature. Furthermore, it offers the possibility to interpolate or extrapolate the waveform estimation to regions where no data is available. Examples using simulated data sets are included for demonstration.Comment: 15 pages, 15 figures, submitted 15th Sept. 2013, accepted 2nd April 2014 by MNRAS. MNRAS, 201

    Timing models for the long-orbital period binary pulsar PSR B1259-63

    Get PDF
    The pulsar PSR B1259-63 is in a highly eccentric 3.4-yr orbit with the Be star SS 2883. Timing observations of this pulsar, made over a 7-yr period using the Parkes 64-m radio telescope, cover two periastron passages, in 1990 August and 1994 January. The timing data cannot be fitted by the normal pulsar and Keplerian binary parameters. A timing solution including a (non-precessing) Keplerian orbit and timing noise (represented as a polynomial of fifth order in time) provide a satisfactory fit to the data. However, because the Be star probably has a significant quadrupole moment, we prefer to interpret the data by a combination of timing noise, dominated by a cubic phase term, and ω˙\dot\omega and x˙\dot x terms. We show that the ω˙\dot\omega and x˙\dot x are likely to be a result of a precessing orbit caused by the quadrupole moment of the tilted companion star. We further rule out a number of possible physical effects which could contribute to the timing data of PSR B1259-63 on a measurable level.Comment: LaTeX, 9 pages, 8 figures, accepted for publication in MNRA
    corecore