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Abstract—Classifiers trained on data sets possessing an im-
balanced class distribution are known to exhibit poor generali-
sation performance. This is known as the imbalanced learning
problem. The problem becomes particularly acute when we
consider incremental classifiers operating on imbalanced data
streams, especially when the learning objective is rare class
identification. As accuracy may provide a misleading impression
of performance on imbalanced data, existing stream classifiers
based on accuracy can suffer poor minority class performance
on imbalanced streams, with the result being low minority class
recall rates. In this paper we address this deficiency by proposing
the use of the Hellinger distance measure, as a very fast decision
tree split criterion. We demonstrate that by using Hellinger a
statistically significant improvement in recall rates on imbalanced
data streams can be achieved, with an acceptable increase in the
false positive rate.

I. INTRODUCTION

Imbalanced data sets are characterised by a skewed class
distribution, which typically favours a single majority class,
over one or more minority classes. Nearly all datasets are
imbalanced to some degree, however the extent to which they
are imbalanced varies greatly. Those data sets which exhibit the
largest imbalances present significant problems for inductive
learners, since algorithms trained on such data often exhibit
poor generalisation capabilities on test data. The cause of such
poor performance has been the subject of extensive study by
the research community since the early 2000’s [1], [2], [3].
The problem is now fairly well understood, and a number of
useful approaches have been developed that generally seem
to improve classifier performance on imbalanced datasets (see
related work in Section VII). However these approaches are
intended for use on static datasets. These are data sets of a
known fixed size n. In situations where the size of the dataset is
indeterminable as with data streams, these approaches become
unsuitable, either due to their reliance on knowing n a priori,
or their higher computational requirements. In this paper we
combine the Hellinger distance used previously in some static
imbalanced learners [4] with a stream classifier based on the
Hoeffding bound. Together these can be used to produce a
skew insensitive decision tree split criterion that substantially
increases minority class recall rates. Our goal is to use this
approach to extract rare class instances from a heavily imbal-
anced data stream arising from the pulsar astronomy domain.

II. MOTIVATION

The motivation for this work is provided by the devel-
opment of the world’s largest radio telescope, the Square
Kilometre Array (SKA). The SKA will comprise thousands
of individual 15 metre receiving dishes, which together form

an instrument capable of producing data at a rate of many
TB/s [5]. When used to survey the sky for periodic signals
produced by a rare type of stellar object, the radio pulsar,
such a high data capture rate presents a number of significant
computational challenges and barriers to discovery. Our princi-
pal dilemma centres on determining how to separate the small
number of scientifically interesting signal detections made by
the SKA, from the large volume of negative detections aris-
ing from radio frequency interference (RFI) and background
noise. The data to be processed is an intrinsically imbalanced
collection of overwhelmingly negative detections requiring
separation, which maps neatly to a traditional machine learning
classification problem. However since the SKA’s high data
capture rate makes it infeasible for all data to be stored
permanently (due to financial restrictions), the classification
of received data will likely have to be performed on arrival,
in close to real-time. The continual arrival of new signals for
processing is analogous to a stream of data flowing from the
telescope, through a computational processing pipeline. Thus
we view the identification of rare signals in SKA data as a
stream classification problem.

III. PROBLEM DEFINITION

We are concerned with the identification of rare class
instances within a data stream emerging from a radio tele-
scope’s data processing pipeline, which possesses a class
distribution of approximately +1:-10,0001. Each instance in the
stream is a pulsar candidate, a summary description of each
signal exhibiting specific characteristics of interest. Our aim
is to build a binary classifier capable of separating candidates
arising from noise or RFI (the negative majority class), from
those generated by radio pulsars (the positive minority class).
We define the input stream as S = {..., (xi), ...}, i = 1, ...,∞
which describes the candidates emerging from a pulsar search
pipeline under a discrete time model. Each candidate in the
stream xi ∈ X is defined as xi = {(x1i ), ..., (xmi )}, where
each xji ∈ R for j = 1, ...,m is a single summary statistic
that describes some aspect of the signal represented by the
candidate xi. We specify binary candidate labels C = {−1, 1},
where ci is an individual label such that ci ∈ C (i.e. uninter-
esting = -1, interesting = 1). Our goal is to learn a function
f : X 7→ C which maps each candidate to its correct label
producing the set of labelled candidates. From these the set of
positively labelled candidates can be obtained, which should
be stored for expert inspection. Building a classifier to achieve
this on a static data set is straightforward. We need only form a
suitable training set and apply the classification model learned

1Estimation based on data obtained during a past pulsar survey [6].



to a test set. In a streamed classification scenario there is no
distinction between training and test sets, since all data resides
in the stream. There are instead two general processing models
used for learning.

• Batch processing model: at time step i a batch b of
n unlabelled instances arrives, and is classified using
some model trained on batches b1 to bi−1. At time i+1
labels arrive for batch bi, along with a new batch of
unlabelled instances bi+1 to be classified.

• Incremental processing model: a single data instance
arrives at time step i defined as xi, and is classified
using some model trained on instances x1 to xi−1. At
time i + 1 a label arrives for xi, along with a new
unlabelled instance xi+1 to be classified.

We adopt the incremental processing model throughout this
work since it neatly describes the arrival of each candidate.
However the model must be adapted since the stream S
as described previously is completely unlabelled, given it
is impossible to know a priori the correct label for each
candidate2. To accommodate this we prepend labelled training
examples3 to the start of the stream, ensuring a classification
model is built from instances x1 to xi−1. We refer to this
process here as ‘off-line pre-training’. Furthermore, true class
labels cannot be obtained for every instance at i + 1 due
to the candidate volume and the cost of analysis. In reality
only instances receiving positive predictions will be labelled
following expert analysis. This is simulated in the experiments
described in Section VI, by assigning a varying proportion of
instances in the stream their correct label at i + 1. Thus we
now consider the stream S = {..., (xi, ci), ...} where ci is a
class label. For labelled instances in the stream originating
from simulated expert analysis, ci will assume the value of a
class label ∈ C, whilst for those without labels ci = 0 which
our learning algorithms will ignore during training.

IV. IMBALANCED LEARNING ON DATA STREAMS

Training a classifier on an imbalanced dataset does not
necessarily mean poor generalisation performance [7]. If the
training data are discriminative enough to separate the different
classes in data space, then the classifier will perform well
regardless of the imbalance. A contrived example of this
is shown in Fig.1. It demonstrates that the underlying data
distribution alone is not the root cause of poor classifica-
tion performance on imbalanced data [7]. Rather it is three
characteristics often possessed by imbalanced data sets that
make it difficult for a classifier to separate the minority and
majority classes. These are small sample size [8], [7], class
inseparability [9], [7] Fig.2(c), and small disjuncts in Fig.2(d).
Ultimately these characteristics conspire to make it difficult for
a classifier to construct an optimal decision boundary leading
to sub-optimal classifier performance. Furthermore learning
from non-static imbalanced data, is known to be a difficult and
important problem yet to be overcome in data-mining research
[10]. Whilst classifiers built upon imbalanced streams have
strong accuracy overall, they possess poor performance on the

2Accurate labels can only be obtained via re-observation, which is finan-
cially costly and time consuming.

3There are some 2,000 pulsars known to science for which training
candidates can be generated.

Fig. 1: Training distribution (a) and test distribution (b). Here
a skewed class distribution has no effect on classifier perfor-
mance since a decision boundary can be induced which allows
all instances to be classified correctly. Based on diagrams used
in [8].

Fig. 2: Class inseparability in (c) and small disjuncts in (d).
Based on diagrams used in [8].

minority class [11], [12]. Consider as an example a two-class
stream with an arbitrarily large imbalance i.e. lim+→1 and
lim−→∞. At any moment such a stream will possess only
a small number of minority class instances. Thus a learner
retrained over a random batch will do so on an intrinsically
small sample of minority class instances, whilst an incremental
learner will rarely be presented with a minority class example
to learn from. This is the streamed version of the small sample
problem. As the inductive bias of many machine learning
algorithms is geared towards forming the simplest hypothesis
possible, its consequences are severe: algorithms will typically
predict the majority class for all instances [13], particularly as
it is easy to dismiss any positives seen as noise. In real world
domains the small sample problem is worsened as streams
are often either unlabelled or partially labelled. Any partial
labelling of the stream will likely include only the majority
class instances, and this becomes increasingly likely as the
proportion of labelled instances decreases. Those minority
class instances which would provide a more representative
sample, are rarely, if ever labelled. Real world classification
tasks are also non-trivial, i.e. there is some degree of class
overlap. Even if these overlaps are caused by noise and are
few in number, say 1

1000 instances, if the minority class occurs
infrequently enough in the stream i.e. 1

10000 , then in time
this noise would drown out the minority concept leading to
class inseparability. Indeed the noisy negative examples may
quickly form new clusters in data space for which a classifier
would need to develop small disjuncts to cover. In order to
alleviate these problems we either need to provide a larger
and more representative sample of minority class examples
for learning, or alternatively, a new approach unaffected by
class skew. In this work we have adopted the latter approach
using the Hellinger distance measure as a skew insensitive
split criterion for streamed decision trees. Note that we have
not considered the effects of distributional drift (concept drift)
here; we reserve such discussions for future work.



V. HELLINGER DISTANCE

The Hellinger distance is a symmetric and non-negative
measure of distributional divergence, related to the Bhat-
tacharyya coefficient (BC)4 and the Kullback-Leibler (KL)
divergence5. Cieslak and Chawla proposed the use of the
Hellinger distance as a decision tree split criterion for im-
balanced data in [4], [14]. They were able to utilise the
distance in this way by considering two distributions P and
N , to be the normalised frequencies of feature values in a
binary classification scenario. In which case when P = N
there is no difference between the distributions therefore the
distance is zero, whilst if the two are completely disjoint then
the distance will be one. Cieslak and Chawla then use the
notion of ‘affinity’ between P and N as a decision tree split
criterion. The aim is to split tree nodes on those features
with minimal affinity i.e. maximal Hellinger distance. This
approach is appealing since it enables the splitting of features
based on how well they discriminate between the examples
seen so far in the stream, rather than on the feature which
describes the largest possible number of instances seen so
far (as with information gain). Intuitively Hellinger is skew
insensitive, since an abundance of examples of one class will
only serve to make its sample distribution more representative
of its real distribution. In which case if a feature is a good
class discriminator, then irrespective of the balance it will
remain as such. Theoretical evidence backing up this intuitive
interpretation is supplied in [4], [14]. The Hellinger distance
with respect to a single continuous feature for the two class
case given in [4], where the feature is discretized into b bins
is defined as follows,

dH(X+, X−) =

√√√√√ b∑
j=1

(√
|X+j |
|X+|

−

√
|X−j |
|X−|

)2

, (1)

where X+ is the positive class count, X− the negative class
count, and X+j the count of positives in bin j (defined
similarly for X−j). The problem with this formulation is
that it requires knowledge of the normalised frequencies of
values for each feature. This requires O(lfbc) memory for
l leaves in the tree, f features, b bins and c classes. For
some stream environments this could be too costly. However
the Hellinger distance between two normal distributions P
and N can be computed more straightforwardly, provided the
mean and standard deviation of the feature is known. Given
P with mean µ1, variance σ2

1 and standard deviation σ1 with
N defined similarly; we can calculate the Hellinger distance
as follows,

dH(P,N) =

√√√√1−

√
2σ1σ2
σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)2

σ2
1+σ2

2 . (2)

The advantage of Eq. 2 is that it requires we keep only simple
statistics which describe the distribution of each feature requir-
ing O(lf · 2c) memory. Thus we propose a new algorithm-
level approach (as opposed to other approaches described
in Section VII) which uses the Hellinger distance defined
between two normal distributions, as a splitting criterion in

4Though Hellinger obeys the triangle inequality whereas the BC does not.
5The squared Hellinger distance lower bounds the KL divergence.

Hoeffding trees (the Very Fast Decision Tree developed in
[15]). We call this the Gaussian Hellinger VFDT. Since this
approach relies upon measuring distances between normal
distributions, it will require a number of examples to be seen
before a reasonable normal model can be computed for each
feature. Consequently it does not initially possess the any-time
property6. Furthermore we are also assuming that features will
be normally distributed. Pseudo code for our implementation
of the GH-VFDT is presented in Algorithm 1, based on the
VFDT algorithm given in [15]. Note that in our implementation
of Eq. 2 continuous attributes were discretized into 10 bins.
By way of comparison we also developed a streamed version

Algorithm 1 Gaussian Hellinger Very Fast Decision Tree (GH-VFDT)

Require: An input dataset S = {..., (xi, ci), ...}, such that each xi
is an instance and ci is its true class label. Also requires δ the
confidence desired, and τ a parameter which prevents ties.

1: procedure GH-VFDT(S, δ, τ )
2: Let DT be a decision tree with leaf l1
3: for i← 1 to |S| do . For each stream instance.
4: l← sort(xi, ci) . Sort instance xi to leaf l.
5: k ← ci . Get class.
6: for j ← 1 to |xi| do . For each feature.
7: update µijk(l)
8: update σijk(l)
9: Label l with majority class of instances seen at l

10: if all examples seen at l don’t belong to same class then
11: Fa ← null . Best feature.
12: Fb ← null . 2nd best feature.
13: for j ← 1 to |xi| do . For each feature.
14: dist← dH(xi) . From equation 2.
15: Fa, Fb ← getBest(dist, xi)

16: ε =

√
R2 ln(1/δ)

2n
. Hoeffding bound.

17: if dH(Fa)− dH(Fb) > ε or ε < τ then
18: Replace l with new leaf that splits on Fa
19: for each branch of split do
20: Add new leaf lm
21: for k ← 1 to |C| do . For each class.
22: for j ← 1 to |xi| do . For each feature.
23: µijk(lm)← 0
24: σijk(lm)← 0

25: return DT

of the HDTree [4] which we call HD-VFDT. This is the same
algorithm as GH-VFDT, except Eq.2 is replaced by Eq.1.

VI. EXPERIMENTS

A. Static Tests

Static experiments attempted to reproduce the results for
the static domain as described in [4]. We applied 5 × 2-fold
cross validation (CV)7 in conjunction with the C4.48, C4.5,
and the static HDTree [4] algorithm which uses Eq.1; to four
data sets used in [4] (indicated in Table I with an asterisk). To
evaluate our results we used metrics that give a representative
impression of classifier performance on the minority class (e.g.
the G-Mean =

√
TP

TP+FN ×
TN

TN+FP ). The area under the

6Although this can be mitigated by a suitable period of ‘pre-training’.
7Data split into two chunks, the first used for training the second for testing.

This is then reversed (train on second, test on first) and repeated five times.
10-fold CV not used as it can give an elevated type 1 error rate [4], [16].

8An unpruned decision tree using Laplace smoothing at the leaves.



Dataset Instances Attributes / Type ∼Balance Distribution
+ -

Pulsar 11,219,848 22 / Continuous +1 : -7000 1,611 11,218,237
Skin 245,057 3 / Discrete +1 : -4 50,859 194,198
MiniBoone 130,065 50 / Continuous +1 : -3 36,499 93,565
Letter* 20,000 16 / Continuous +1 : -4 3,878 16,122
Magic 19,020 10 / Continuous +1 : -2 6,688 12,332
Pen* 10,992 16 / Continuous +1 : -9 1,055 9,937
Statlog Landsat* 6,435 36 / Continuous +1 : -9 626 5,809
Statlog Image* 2,310 19 / Continuous +1 : -6 330 1,980

TABLE I: Characteristics of the data sets used. Asterisks
indicate data sets used in [4].

ROC curve (AUC), F-score and recall rate were also used.
This test procedure was then repeated on larger datasets not
used in [4]. The purpose of running these experiments was to
determine a baseline level of performance for static classifiers,
against which stream performance could be compared.

B. Stream Tests

Data stream experiments were performed on a VFDT, the
GH-VFDT presented in Algorithm 1, and a streamed imple-
mentation of the HDTree called HD-VFDT also developed as
part of this work. In this streamed scenario, the three largest
data sets in Table I were shuffled (except for the temporally
ordered pulsar data) and then randomly sampled in order to
generate: 1) training sets containing 200 positive and 1000
negative instances to be used for pre-training, and 2) disjoint
test sets possessing different levels of class imbalance and a
varied proportion of labelled instances, simulating different
levels of expert feedback. Each sampling permutation was
treated as a single stream of data. For each algorithm, tests
were repeated ten times for a given balance and labelling,
allowing results to be averaged. An incremental test-then-train
approach was adopted throughout the stream experiments, i.e.
test on an instance, then train if the label is available. Results
were evaluated predominately using the G-Mean. The popular
AUC metric was not computed given that it is computationally
expensive to do so for millions of instances9. To rigorously
validate our stream results, one-factor analysis of variance
(ANOVA) tests were performed, where the algorithm used was
the factor. Tukey’s Honestly Significant Difference (HSD) test
was then applied to determine which results where statistically
significant using α = 0.01.

C. Data

In total eight datasets were used for this work (see Table I).
The largest dataset consisted of pulsar candidates obtained
during the HTRU survey [19]10. The remaining datasets were
all obtained from the UCI machine learning repository. These
include the Skin Segmentation, MiniBoone and the Magic
Gamma Telescope datasets, describing binary classification
problems. The Letter, Pen, Statlog Landsat and Statlog Image
datasets on the other hand, describe multi-class problems.
These were converted to binary datasets by labelling the
smallest class within them as the minority class, and labelling
all other instances as belonging to the majority class. For the
Letter data set this meant grouping all vowel instances (without

9Whilst methods have been developed to provide AUC approximations for
large data sets [17], we do not make use of these here. Particularly as work in
[18] suggests the AUC is an unsuitable metric for use upon imbalanced data.

10This data is currently not publicly accessible.

Dataset Algorithm AUC G-Mean F-Score Recall

Pulsar
C4.4 .976 ± .03 .796 ± .03 .628 ± .09 .634± .14
C4.5 .867 ± .09 .790 ± .07 .635 ± .06 .624 ± .11

HDTree .992 ± .01 .734 ± .04 .555 ± .05 .540 ± .06

Skin
C4.4 .999 ± .01 .999 ± .01 .998 ± .01 .999 ± .01
C4.5 .999 ± .01 .999 ± .01 .998 ± .01 .999 ± .01

HDTree .999 ± .01 .999 ± .01 .998 ± .01 .998 ± .01

MiniBoone
C4.4 .999 ± .01 .999 ± .01 .999 ± .01 .999 ± .01
C4.5 .999 ± .01 .999 ± .01 .999 ± .01 .999 ± .01

HDTree .999 ± .01 .999 ± .01 .999 ± .01 .999 ± .01

Letter
C4.4 .965 ± .01 .913 ± .03 .862 ± .03 .861 ± .05
C4.5 .933 ± .02 .906 ± .04 .864 ± .05 .844 ± .07

HDTree .967 ± .01 .907 ± .02 .860 ± .03 .848 ± .05

Magic
C4.4 .888 ± .02 .806 ± .02 .883 ± .01 .913 ± .03
C4.5 .856 ± .03 .809 ± .02 .884 ± .01 .914 ± .03

HDTree .884 ± .01 .793 ± .02 .853 ± .01 .848 ± .02

Pen
C4.4 .986 ± .01 .965 ± .02 .945 ± .02 .936 ± .05
C4.5 .968 ± .02 .962 ± .02 .945 ± .03 .929 ± .03

HDTree .988 ± .01 .965 ± .02 .948 ± .03 .936 ± .05

Statlog Landsat
C4.4 .912 ± .03 .716 ± .04 .537 ± .07 .540 ± .07
C4.5 .731 ± .14 .710 ± .07 .542 ± .10 .528 ± .10

HDTree .916 ± .02 .708 ± .04 .541 ± .07 .525 ± .05

Statlog Image
C4.4 .987 ± .03 .982 ± .02 .971 ± .03 .969 ± .05
C4.5 .981 ± .02 .980 ± .02 .970 ± .03 .964 ± .03

HDTree .992 ± .01 .987 ± .02 .978 ± .03 .978 ± .04

TABLE II: Results obtained on static datasets using 5× 2 CV.

‘y’) to form the minority class, whilst for the Pen data set those
instances with the class label ‘5’ formed the minority class.

D. Results

On static data sets we find that the HDTree algorithm
developed in [4] achieves the best AUC values on 5 of the
datasets used, as can be seen in Table II. On those that remain
the HDTree has a joint best AUC value on two datasets,
and is outperformed only once on the Magic dataset by the
C4.4 algorithm. The AUC results obtained for the Letter, Pen,
Landsat and Image datasets are similar to those reported in [4].
Thus our results generally support those reported in [4] for the
HDTree. Though here we can see that possessing the best AUC
value does not necessarily translate to the best imbalanced
performance. For instance, whilst the AUC for the HDTree
is higher on the Letter, Pulsar and Landsat data sets, the G-
Mean and the recall rate is lower. Whilst the HDTree has a
better AUC value, the other algorithms, particularly C4.4, must
be operating at points on the ROC curve which provide better
results.

In the tables that follow the results for the streamed
test scenarios are given. In these tables the significance of
each result is indicated using colour coding. Different colours
indicate statistically different results at the level α = 0.01.
Here green indicates the best performing and red the worst i.e.
green > yellow > red. Table III shows the results obtained on
data streams with imbalances ranging from +1:-10 to +1:-100
with varied levels of labelling. For the least imbalanced streams
(imbalance +1:-10), we see that for pulsar data there was no
significant difference between the algorithms at the α = 0.01
level. However there were significant differences observed
during testing on the Skin and MiniBoone datasets. Here
the VFDT consistently outperforms the two Hellinger based
approaches. The performance of the GH-VFDT in particular
worsens on Skin data as the labelling increases. The HD-
VFDT is also affected since its performance drops when
labelling reaches 75%. Crucially however, as the imbalance
worsens to +1:-100 this situation reverses. The two Hellinger
based approaches maintain their high G-Mean values, whilst



Dataset Balance +1 : -10 RankLabelling (%) 10 50 75 100

Pulsar
HTree .858/.926 .860/.904 .858/.901 .860/.905 2.5
HD-VFDT .860/.922 .855/.923 .855/.933 .850/.920 1.25
GH-VFDT .858/.918 .852/.915 .851/.909 .850/.917 2.25

Skin
HTree .843/.911 .894/.958 .920/.969 .930/.973 1
HD-VFDT .737/.893 .746/.898 .726/.877 .727/.888 2.75
GH-VFDT .815/.911 .824/.904 .835/.913 .816/.914 1.75

MiniBoone
HTree .954/.958 .993/.993 .992/.993 .992/.992 1
HD-VFDT .889/.913 .859/.786 .882/.912 .859/.818 2
GH-VFDT .568/.398 .666/.450 .661/.497 .760/.665 3

Balance +1 : -100 RankLabelling (%) 10 50 75 100
HTree .673/.876 .752/.854 .753/.852 .767/.859 2.75
HD-VFDT .457/.835 .472/.929 .529/.919 .493/.931 1.5
GH-VFDT .518/.903 .483/.920 .536/.916 .552/.916 1.75
HTree .472/.671 .486/.615 .541/.655 .574/.693 3
HD-VFDT .277/.887 .292/.885 .319/.903 .263/.892 2
GH-VFDT .399/.898 .478/.915 .441/.904 .430/.900 1
HTree .918/.932 .964/.972 .972/.978 .980/.982 1
HD-VFDT .874/.866 .791/.857 .758/.854 .876/.949 2
GH-VFDT .742/.597 .547/.395 .623/.498 .511/.459 3

TABLE III: F-score/G-Mean results for the HoeffdingTree (HTree), Hellinger Distance Tree (HD-VFDT) [4] and GH-VFDT
classifiers, trained before classifying a stream. Imbalances ranging from +1:-10 to +1:-100, significance tests used α = 0.01.

Dataset Balance +1 : -1,000 RankLabelling (%) 10 50 75 100

Pulsar
HTree .372/.746 .576/.785 .581/.795 .610/.781 3
HD-VFDT .106/.924 .107/.929 .106/.924 .100/.934 1
GH-VFDT .137/.910 .131/.915 .128/.905 .125/.928 2

Skin
HTree .137/.532 .106/.302 .069/.225 .087/.239 3
HD-VFDT .043/.802 .047/.891 .051/.893 .046/.882 2
GH-VFDT .082 /.911 .082/.921 .080/.922 .080/.908 1

MiniBoone
HTree .576 /.617 .918/.951 .812/.862 .907/.943 1.5
HD-VFDT .284/.842 .650/.837 .206/.776 .455/.944 1.5
GH-VFDT .293/.469 .709/.656 .332/.200 .331/.300 3

Balance +1 : -10,000 RankLabelling (%) 10 50 75 100
HTree .194/ .544 .114/.289 .159/.334 .170/.331 3
HD-VFDT .014/.921 .013/.928 .011/.938 .016/.919 1
GH-VFDT .028 /.904 .016/.920 .020/.917 .026/.886 2
HTree .018 /.511 .017/.219 .011/.095 .021/.141 3
HD-VFDT .004 /.871 .005/.914 .005/.908 .006/.869 1.75
GH-VFDT .008/.895 .009/.892 .009/.917 .009/.916 1.25
HTree .604/.672 .586/.667 .651/.830 .649/.707 2
HD-VFDT .021/.844 .039/.792 .048/.875 .328/.853 1
GH-VFDT .667/.500 .260/.447 .603/.494 .302/.489 3

TABLE IV: F-score/G-Mean results for the HoeffdingTree (HTree), Hellinger Distance Tree (HD-VFDT) [4] and GH-VFDT
classifiers, trained before classifying a stream. Imbalances ranging from +1:-1,000 to +1:-10,000, significance tests used α = 0.01.

for the VFDT this metric drops. The Hellinger algorithms
now perform significantly better than the VFDT on both the
Pulsar and Skin datasets at α = 0.01. This trend continues
as the imbalance worsens further as shown in Table IV.
Here we see that the G-Mean of the VFDT has effectively
dropped from .905 for the least imbalanced pulsar stream
with 100% labelling, to .331 for the most imbalanced with
the same labelling. Both Hellinger approaches by contrast
have maintained consistent G-Mean values regardless of the
imbalance. This is reflected in the minority class recall rates
for the three classifiers. The HD-VFDT and GH-VFDT return
more than double the true positives of the VFDT on pulsar
data (see Table V). The MiniBoone results are an exception
to this trend, since all three algorithms perform similarly here
throughout.

Balance +1 : -10,000
Labelling (%) 10 50 75 100
HTREE .307/.001 .087/.001 .116/.001 .121/.001
HD-VFDT .863/.017 .876/.016 .895/.017 .860/.016
GH-VFDT .829/.014 .861/.017 .855/.013 .801/.012

TABLE V: Recall/false positive rate on pulsar data with an
imbalance of +1:-10,000 and 10% labelled data.

In summary these results indicate that for streams possess-
ing class imbalances greater than +1:-10, the use of algorithms
such as the GH-VFDT and HD-VFDT can result in statistically
significant increases in the minority class recall rate over
standard stream classifiers such as the VFDT. Of the Hellinger
distance based approaches described in this paper, our stream
implementation of the HDTree algorithm from [4] was the best
performer. It typically obtained the highest G-Mean values,
and significantly improved recall rates over the VFDT. Our
algorithm GH-VFDT, also significantly improved recall rates
over the VFDT. Whilst it did not achieve recall rates quite
as high as the HD-VFDT, its false positive rate was in fact

lower. Crucially the difference between these algorithms on the
most imbalanced streams was not significant at α = 0.01 (on
all but the MiniBoone data). The GH-VFDT and HD-VFDT
also achieved G-Mean values and recall rates which were
higher than those observed for each of the static classifiers
described in SectionVI-A. Thus we argue that the GH-VFDT
is a viable classifier for imbalanced streams particularly when
the memory required by the HD-VFDT hinders its use.

VII. RELATED WORK

The problems associated with learning from an imbalanced
class distribution, are typically tackled using one of three
approaches. Data level approaches seek to modify data sets
in order to rebalance the class distribution directly. Algorithm
level approaches focus on modifying algorithms rather than
datasets, to achieve improved performance on the minority
class examples. Cost sensitive approaches on the other hand
utilise different cost matrices describing the costs associated
with misclassifying a particular data instance, reflecting the
fact that it is usually more costly to misclassify rare class in-
stances. There are also many hybrids of these approaches, par-
ticularly of those that mix data and algorithm level approaches
in some way. However practical efforts at solving the imbal-
anced learning problem have focused on developing new data
level sampling techniques. Some representative approaches
include One-sided selection (OSS) [20], Wilsons Editing (WE)
[21], [22], the Synthetic Minority Over-sampling Technique
(SMOTE) [23], Borderline SMOTE [24], and ADASYN [25].

More recently some have begun investigating how these
perform on streaming data. Nguyen et al. [26] for instance
compared over-sampling and under-sampling techniques in the
context of streamed data. Their results suggest that whilst
under-sampling performs better than over-sampling at smaller
training set sizes, performance converges as the training set



becomes larger (i.e. as more streamed data is used to train a
classifier). Based upon these results the authors propose a new
approach, multiple random under-sampling (MRUS), which
generates m random undersamplings of the stream, each of
which is used to train a separate classifier forming an ensem-
ble. In [27] Chen et al. developed their recursive weighted
ensemble approach (REA) for classifying non-stationary im-
balanced data streams. REA adaptively pushes minority class
examples into the current data chunk to explicitly balance the
class distribution. The Stream ensemble framework developed
in [28] attempts to mitigate similar problems by combining an
ensemble classifier with sampling approaches. Each classifier
in the ensemble is trained on a data set containing all the
positive instances seen in the stream, and a unique subset
of negative instances undersampled from the stream. The
approach is designed to operate under a batch model.

VIII. CONCLUSION

In this paper we have presented a new classification algo-
rithm for imbalanced data streams called GH-VFDT. Through
an empirical investigation we have demonstrated that the
algorithm can effectively improve minority class recall rates
on imbalanced data, with similar levels of performance to
the algorithm described in [4], whilst returning fewer false
positives. A natural extension to this work would be to modify
the decision tree algorithm so that rather than predicting the
majority class at a tree leaf, we predict the class that possesses
the maximal summed affinity to the features possessed by
an instance. Furthermore, we would like to change how split
points are calculated at nodes, such that the best split is
obtained by choosing the point with the lowest Hellinger
distance variance.
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