99 research outputs found

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa

    Correlated emission and spin-down variability in radio pulsars

    Full text link
    The recent revelation that there are correlated period derivative and pulse shape changes in pulsars has dramatically changed our understanding of timing noise as well as the relationship between the radio emission and the properties of the magnetosphere as a whole. Using Gaussian processes we are able to model timing and emission variability using a regression technique that imposes no functional form on the data. We revisit the pulsars first studied by Lyne et al. (2010). We not only confirm the emission and rotational transitions revealed therein, but reveal further transitions and periodicities in 8 years of extended monitoring. We also show that in many of these objects the pulse profile transitions between two well-defined shapes, coincident with changes to the period derivative. With a view to the SKA and other telescopes capable of higher cadence we also study the detection limitations of period derivative changes.Comment: 4 pages, 2 Figures, Proceedings of IAU Symposium 337 "Pulsar Astrophysics - The Next 50 Years" held at Jodrell Bank Observatory, UK Sept. 4-8 201

    X-ray Observations of High-B Radio Pulsars

    Get PDF
    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 +/- 60 eV, with bolometric luminosity L_bb = 2.0(+2.2 -0.7)e+32 erg/s = 0.0036E_dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1 sigma upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect either pulsar, setting 3 sigma upper limits on their blackbody temperatures of 48 and 56 eV, respectively. Despite the similarities in rotational properties, these sources are significantly cooler than all but one of the XINSs, which we attribute to the two groups having been born with different magnetic fields and hence evolving differently.Comment: 18 pages, 2 tables, 5 figures, accepted for publication in the Astrophysical Journa

    Very long baseline astrometry of PSR J1012+5307 and its implications on alternative theories of gravity

    Full text link
    PSR J1012+5307, a millisecond pulsar in orbit with a helium white dwarf (WD), has been timed with high precision for about 25 years. One of the main objectives of this long-term timing is to use the large asymmetry in gravitational binding energy between the neutron star and the WD to test gravitational theories. Such tests, however, will be eventually limited by the accuracy of the distance to the pulsar. Here, we present VLBI (very long baseline interferometry) astrometry results spanning approximately 2.5 years for PSR J1012+5307, obtained with the Very Long Baseline Array as part of the MSPSRPI project. These provide the first proper motion and absolute position for PSR J1012+5307 measured in a quasi-inertial reference frame. From the VLBI results, we measure a distance of 0.830.02+0.060.83^{+0.06}_{-0.02}kpc (all the estimates presented in the abstract are at 68% confidence) for PSR J1012+5307, which is the most precise obtained to date. Using the new distance, we improve the uncertainty of measurements of the unmodeled contributions to orbital period decay, which, combined with three other pulsars, places new constraints on the coupling constant for dipole gravitational radiation κD=(1.7±1.7)×104\kappa_D=(-1.7\pm1.7)\times 10^{-4} and the fractional time derivative of Newton's gravitational constant G˙/G=1.84.7+5.6×1013yr1\dot{G}/G = -1.8^{\,+5.6}_{\,-4.7}\times 10^{-13}\,{\rm yr^{-1}} in the local universe. As the uncertainties of the observed decays of orbital period for the four leading pulsar-WD systems become negligible in 10\approx10 years, the uncertainties for G˙/G\dot{G}/G and κD\kappa_D will be improved to 1.5×1013yr1\leq1.5\times10^{-13}\,{\rm yr^{-1}} and 1.0×104\leq1.0\times10^{-4}, respectively, predominantly limited by the distance uncertainties.Comment: published in ApJ (2020ApJ...896...85D

    Reconciling optical and radio observations of the binary millisecond pulsar PSR J1640+2224

    Full text link
    Previous optical and radio observations of the binary millisecond pulsar PSR J1640+2224 have come to inconsistent conclusions about the identity of its companion, with some observations suggesting the companion is a low-mass helium-core (He-core) white dwarf (WD), while others indicate it is most likely a high-mass carbon-oxygen (CO) WD. Binary evolution models predict PSR J1640+2224 most likely formed in a low-mass X-ray binary (LMXB) based on the pulsar's short spin period and long-period, low-eccentricity orbit, in which case its companion should be a He-core WD with mass about 0.350.39M0.35 - 0.39 \, M_\odot, depending on metallicity. If it is instead a CO WD, that would suggest the system has an unusual formation history. In this paper we present the first astrometric parallax measurement for this system from observations made with the Very Long Baseline Array (VLBA), from which we determine the distance to be 1520150+170pc1520^{+170}_{-150}\,\mathrm{pc}. We use this distance and a reanalysis of archival optical observations originally taken in 1995 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) in order to measure the WD's mass. We also incorporate improvements in calibration, extinction model, and WD cooling models. We find that the existing observations are not sufficient to tightly constrain the companion mass, but we conclude the WD mass is >0.4M>0.4\,M_\odot with >90%>90\% confidence. The limiting factor in our analysis is the low signal-to-noise ratio of the original HST observations.Comment: 6 pages, 5 figure

    Model-based asymptotically optimal dispersion measure correction for pulsar timing

    Full text link
    In order to reach the sensitivity required to detect gravitational waves, pulsar timing array experiments need to mitigate as much noise as possible in timing data. A dominant amount of noise is likely due to variations in the dispersion measure. To correct for such variations, we develop a statistical method inspired by the maximum likelihood estimator and optimal filtering. Our method consists of two major steps. First, the spectral index and amplitude of dispersion measure variations are measured via a time-domain spectral analysis. Second, the linear optimal filter is constructed based on the model parameters found in the first step, and is used to extract the dispersion measure variation waveforms. Compared to current existing methods, this method has better time resolution for the study of short timescale dispersion variations, and generally produces smaller errors in waveform estimations. This method can process irregularly sampled data without any interpolation because of its time-domain nature. Furthermore, it offers the possibility to interpolate or extrapolate the waveform estimation to regions where no data is available. Examples using simulated data sets are included for demonstration.Comment: 15 pages, 15 figures, submitted 15th Sept. 2013, accepted 2nd April 2014 by MNRAS. MNRAS, 201
    corecore