Previous optical and radio observations of the binary millisecond pulsar PSR
J1640+2224 have come to inconsistent conclusions about the identity of its
companion, with some observations suggesting the companion is a low-mass
helium-core (He-core) white dwarf (WD), while others indicate it is most likely
a high-mass carbon-oxygen (CO) WD. Binary evolution models predict PSR
J1640+2224 most likely formed in a low-mass X-ray binary (LMXB) based on the
pulsar's short spin period and long-period, low-eccentricity orbit, in which
case its companion should be a He-core WD with mass about 0.35−0.39M⊙, depending on metallicity. If it is instead a CO WD, that would
suggest the system has an unusual formation history. In this paper we present
the first astrometric parallax measurement for this system from observations
made with the Very Long Baseline Array (VLBA), from which we determine the
distance to be 1520−150+170pc. We use this distance and a
reanalysis of archival optical observations originally taken in 1995 with the
Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) in
order to measure the WD's mass. We also incorporate improvements in
calibration, extinction model, and WD cooling models. We find that the existing
observations are not sufficient to tightly constrain the companion mass, but we
conclude the WD mass is >0.4M⊙ with >90% confidence. The limiting
factor in our analysis is the low signal-to-noise ratio of the original HST
observations.Comment: 6 pages, 5 figure