23 research outputs found

    Determinants of habitat use and community structure of rodents in northern shortgrass steppe

    Get PDF
    1996 Spring.Includes bibliographical references.Patterns of distribution and abundance of small mammals reflect the responses of individuals to the spatial and temporal availability of resources and abiotic conditions, as well as interactions with conspecifics and other species. I examined habitat selection of two rodents, the deer mouse (Peromyscus maniculatus) and the northern grasshopper mouse (Onychomys leucogaster), on shortgrass steppe in north-central Colorado. Both species consume arthropods when these resources are plentiful, but grasshopper mice prey on other rodents and thus may have both competitive and predatory effects on deer mice. To examine these interactions, I conducted a removal experiment to determine the effect of grasshopper mice on microhabitat use, diet, and abundance of deer mice, and an odor-response experiment to determine whether olfactory cues mediate interactions between these species. Deer mice preferred shrubs at both individual and population levels, presumably to reduce predation risk. Mice oriented movements toward shrubs and traveled under shrubs more often than expected based on the density of shrubs on study plots. Population density also increased with increasing shrub density and aggregation. The response of mice to shrub cover was non-linear. Thresholds in the selective use of shrubs, movement patterns, and abundance occurred over a narrow range of shrub cover where shrubs were most aggregated, underscoring the importance of both shrub density and dispersion. Mice tended to accumulate in areas where their movements were most tortuous, suggesting that it is possible to generate testable predictions about patterns of abundance from individual movements. In contrast, grasshopper mice showed no affinity for shrub microhabitats, and instead oriented movements towards rodent burrows and disturbances created by pocket gophers (Thomomys talpoides). Results from pitfall trapping in different microhabitat types suggested that grasshopper mice used gopher mounds and burrows because of the concentration of insect prey in these microhabitats. The abundance of these microhabitats also was a better predictor of grasshopper-mouse abundance than were broad-scale, qualitative descriptors of macrohabitat type. The significance of these microhabitats across scales demonstrates the importance of spatial and temporal availability of prey to grasshopper mice. Even though grasshopper mice and deer mice show different habitat affinities, grasshopper mice may affect the surface activity and abundance of deer mice in areas where they co-occur. Deer mice decreased in number throughout the removal experiment on both control and removal sites, but the decline was greatest on controls, where grasshopper-mouse numbers increased. No shifts in microhabitat use were detected on removal sites, but deer mice increased their use of shrubs on control sites when grasshopper mice were most abundant. Because diets of deer mice did not differ between control and removal sites during the experiment, grasshopper mice apparently influenced the behavior and populations of deer mice through predation or interference rather than resource competition. Increases in the abundance of granivorous rodents on removal sites support this conclusion, and suggest that grasshopper mice, when abundant, can impact the composition of local assemblages on shortgrass steppe. However, if deer mice actively avoid contact with grasshopper mice, it is unlikely that this interaction is mediated by olfactory cues. When presented with odors of grasshopper mice, harvest mice, and clean cotton, deer mice showed no avoidance of grasshopper-mouse odors, regardless of season, sex or reproductive condition of respondents, or history of contact with grasshopper mice

    Quantum Robots and Environments

    Get PDF
    Quantum robots and their interactions with environments of quantum systems are described and their study justified. A quantum robot is a mobile quantum system that includes a quantum computer and needed ancillary systems on board. Quantum robots carry out tasks whose goals include specified changes in the state of the environment or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activities include determination of the action to be carried out in the next phase and possible recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes of neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. To each task is associated a unitary step operator T that gives the single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and computation phase step operators. Conditions that T_{a} and T_{c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task carrying out a measurement on a very simple environment is analyzed. A decision tree for the task is presented and discussed in terms of sums over phase paths. One sees that no definite times or durations are associated with the phase steps in the tree and that the tree describes the successive phase steps in each path in the sum.Comment: 30 Latex pages, 3 Postscript figures, Minor mathematical corrections, accepted for publication, Phys Rev

    Long-term ecological research on Colorado Shortgrass Steppe

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012

    Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis

    Get PDF
    Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E–09 and 4.10E–18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.publishedVersio

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    Appendix A. Plots of average precipitation and temperature in the spring and summer for the Pawnee National Grassland and Central Plains Experimental Range, Colorado, 1981–2005.

    No full text
    Plots of average precipitation and temperature in the spring and summer for the Pawnee National Grassland and Central Plains Experimental Range, Colorado, 1981–2005

    Appendix B. Methods and results of tests for spatial and temporal autocorrelation in models that predict extinctions from plague in black-tailed prairie dog towns in northern Colorado, Colorado, 1981–2005.

    No full text
    Methods and results of tests for spatial and temporal autocorrelation in models that predict extinctions from plague in black-tailed prairie dog towns in northern Colorado, Colorado, 1981–2005
    corecore