373 research outputs found

    Quantum Electrodynamics at Large Distances II: Nature of the Dominant Singularities

    Full text link
    Accurate calculations of macroscopic and mesoscopic properties in quantum electrodynamics require careful treatment of infrared divergences: standard treatments introduce spurious large-distances effects. A method for computing these properties was developed in a companion paper. That method depends upon a result obtained here about the nature of the singularities that produce the dominant large-distance behaviour. If all particles in a quantum field theory have non-zero mass then the Landau-Nakanishi diagrams give strong conditions on the singularities of the scattering functions. These conditions are severely weakened in quantum electrodynamics by effects of points where photon momenta vanish. A new kind of Landau-Nakanishi diagram is developed here. It is geared specifically to the pole-decomposition functions that dominate the macroscopic behaviour in quantum electrodynamics, and leads to strong results for these functions at points where photon momenta vanish.Comment: 40 pages, 11 encapsulated postscript figures, latexed, math_macros.tex can be found on Archive. full postscript available from http://theorl.lbl.gov/www/theorgroup/papers/35972.p

    The basis problem in many-worlds theories

    Get PDF
    It is emphasized that a many-worlds interpretation of quantum theory exists only to the extent that the associated basis problem is solved. The core basis problem is that the robust enduring states specified by environmental decoherence effects are essentially Gaussian wave packets that form continua of non-orthogonal states. Hence they are not a discrete set of orthogonal basis states to which finite probabilities can be assigned by the usual rules. The natural way to get an orthogonal basis without going outside the Schroedinger dynamics is to use the eigenstates of the reduced density matrix, and this idea is the basis of some recent attempts by many-worlds proponents to solve the basis problem. But these eigenstates do not enjoy the locality and quasi-classicality properties of the states defined by environmental decoherence effects, and hence are not satisfactory preferred basis states. The basis problem needs to be addressed and resolved before a many-worlds-type interpretation can be said to exist.Comment: This extended version is to be published in The Canadian Journal of Physic

    Consistent Quantum Counterfactuals

    Get PDF
    An analysis using classical stochastic processes is used to construct a consistent system of quantum counterfactual reasoning. When applied to a counterfactual version of Hardy's paradox, it shows that the probabilistic character of quantum reasoning together with the ``one framework'' rule prevents a logical contradiction, and there is no evidence for any mysterious nonlocal influences. Counterfactual reasoning can support a realistic interpretation of standard quantum theory (measurements reveal what is actually there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8 pages, 2 figure

    On the Consequences of Retaining the General Validity of Locality in Physical Theory

    Full text link
    The empirical validity of the locality (LOC) principle of relativity is used to argue in favour of a local hidden variable theory (HVT) for individual quantum processes. It is shown that such a HVT may reproduce the statistical predictions of quantum mechanics (QM), provided the reproducibility of initial hidden variable states is limited. This means that in a HVT limits should be set to the validity of the notion of counterfactual definiteness (CFD). This is supported by the empirical evidence that past, present, and future are basically distinct. Our argumentation is contrasted with a recent one by Stapp resulting in the opposite conclusion, i.e. nonlocality or the existence of faster-than-light influences. We argue that Stapp's argumentation still depends in an implicit, but crucial, way on both the notions of hidden variables and of CFD. In addition, some implications of our results for the debate between Bohr and Einstein, Podolsky and Rosen are discussed.Comment: revtex, 11 page

    Bell inequalities for continuous-variable correlations

    Get PDF
    We derive a new class of correlation Bell-type inequalities. The inequalities are valid for any number of outcomes of two observables per each of n parties, including continuous and unbounded observables. We show that there are no first-moment correlation Bell inequalities for that scenario, but such inequalities can be found if one considers at least second moments. The derivation stems from a simple variance inequality by setting local commutators to zero. We show that above a constant detector efficiency threshold, the continuous variable Bell violation can survive even in the macroscopic limit of large n. This method can be used to derive other well-known Bell inequalities, shedding new light on the importance of non-commutativity for violations of local realism.Comment: 4 pages, 1 figure. v2: New results on detector efficiencies and macroscopic limit, new co-author, changed title and abstract, changed figure, added journal reference and DO

    Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    Get PDF
    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur

    Lorentz-covariant quantum mechanics and preferred frame

    Full text link
    In this paper the relativistic quantum mechanics is considered in the framework of the nonstandard synchronization scheme for clocks. Such a synchronization preserves Poincar{\'e} covariance but (at least formally) distinguishes an inertial frame. This enables to avoid the problem of a noncausal transmision of information related to breaking of the Bell's inequalities in QM. Our analysis has been focused mainly on the problem of existence of a proper position operator for massive particles. We have proved that in our framework such an operator exists for particles with arbitrary spin. It fulfills all the requirements: it is Hermitean and covariant, it has commuting components and moreover its eigenvectors (localised states) are also covariant. We have found the explicit form of the position operator and have demonstrated that in the preferred frame our operator coincides with the Newton--Wigner one. We have also defined a covariant spin operator and have constructed an invariant spin square operator. Moreover, full algebra of observables consisting of position operators, fourmomentum operators and spin operators is manifestly Poincar\'e covariant in this framework. Our results support expectations of other authors (Bell, Eberhard) that a consistent formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
    • …
    corecore