570 research outputs found

    Radio Observations of GRB Host Galaxies

    Full text link
    We present 5.5 and 9.0 GHz observations of a sample of seventeen GRB host galaxies at 0.5<z<1.4, using the radio continuum to explore their star formation properties in the context of the small but growing sample of galaxies with similar observations. Four sources are detected, one of those (GRB 100418A) likely due to lingering afterglow emission. We suggest that the previously-reported radio afterglow of GRB 100621A may instead be due to host galaxy flux. We see no strong evidence for redshift evolution in the typical star formation rate of GRB hosts, but note that the fraction of `dark' bursts with detections is higher than would be expected given constraints on the more typical long GRB population. We also determine the average radio-derived star formation rates of core collapse supernovae at comparable redshift, and show that these are still well below the limits obtained for GRB hosts, and show evidence for a rise in typical star formation rate with redshift in supernova hosts.Comment: 15 pages, MNRAS accepte

    Evaluating the impact of binary parameter uncertainty on stellar population properties

    Get PDF
    Binary stars have been shown to have a substantial impact on the integrated light of stellar populations, particularly at low metallicity and early ages - conditions prevalent in the distant Universe. But the fraction of stars in stellar multiples as a function of mass, their likely initial periods and distribution of mass ratios are all known empirically from observations only in the local Universe. Each has associated uncertainties. We explore the impact of these uncertainties in binary parameters on the properties of integrated stellar populations, considering which properties and timescales are most susceptible to uncertainty introduced by binary fractions and whether observations of the integrated light might be sufficient to determine binary parameters. We conclude that the effects of uncertainty in the empirical binary parameter distributions are likely smaller than those introduced by metallicity and stellar population age uncertainties for observational data. We identify emission in the He II 1640Ã… emission line and continuum colour in the ultraviolet-optical as potential indicators of a high mass binary presence, although poorly constrained metallicity, dust extinction and degeneracies in plausible star formation history are likely to swamp any measurable signal

    The Advent of Transport Authorities in South Africa

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had i′∼22i^{\prime} \sim 22 (Mg∼−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∼20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA

    Limits on dust emission from z~5 LBGs and their local environments

    Full text link
    We present 1.2mm MAMBO-2 observations of a field which is over-dense in Lyman Break Galaxies (LBGs) at z~5. The field includes seven spectroscopically-confirmed LBGs contained within a narrow (z=4.95+/-0.08) redshift range and an eighth at z=5.2. We do not detect any individual source to a limit of 1.6 mJy/beam (2*rms). When stacking the flux from the positions of all eight galaxies, we obtain a limit to the average 1.2 mm flux of these sources of 0.6mJy/beam. This limit is consistent with FIR imaging in other fields which are over-dense in UV-bright galaxies at z~5. Independently and combined, these limits constrain the FIR luminosity (8-1000 micron) to a typical z~5 LBG of LFIR<~3x10^11 Lsun, implying a dust mass of Mdust<~10^8 Msun (both assuming a grey body at 30K). This LFIR limit is an order of magnitude fainter than the LFIR of lower redshift sub-mm sources (z~1-3). We see no emission from any other sources within the field at the above level. While this is not unexpected given millimetre source counts, the clustered LBGs trace significantly over-dense large scale structure in the field at z = 4.95. The lack of any such detection in either this or the previous work, implies that massive, obscured star-forming galaxies may not always trace the same structures as over-densities of LBGs, at least on the length scale probed here. We briefly discuss the implications of these results for future observations with ALMA.Comment: 10 pages, 6 figures, MNRAS Accepte

    Identifying clustering at high redshift through actively star-forming galaxies

    Get PDF
    Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be identified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.Comment: 24 pages, 14 figures, accepted MNRA

    Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees

    Get PDF
    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match accepted version, with additional discussion of metallicity effect

    The Financing of Land Transport in South Africa

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne
    • …
    corecore