7 research outputs found

    Organic-free synthesis of nanostructured SnO2 thin films by chemical solution deposition

    Get PDF
    Novel synthetic approach for preparation of single phase porous SnO2 thin films with controllable grain size and porosity has been developed. The entire process requires neither organic solvents nor addition of any complexing agent. The thin films were deposited using the spin coating technique from an aqueous solution prepared by dissolving tin(II) oxalate in hydrogen peroxide. X-ray diffraction analysis showed that the deposited films are single-phase and their crystallite size increases as the annealing temperature is increased from 300 to 800 °C. It was also found that the films exhibit a preferred (110) orientation of the crystallites. Scanning electron microscopy and atomic force microscopy were employed for the estimation of thickness and surface morphological features of the films. Thickness of the films after 10 deposition cycles was about 160 nm. Roughness of the films increased with the annealing temperature increasing. It has been found from the UV–Vis spectrometry measurements that the films are highly transparent in visible spectral range. The optical band gap was determined to be in the range from 3.86 to 4.00 eV depending on the annealing temperature.publishe

    Temperature-Induced Structural Transformations in Undoped and Eu3+-Doped Ruddlesden–Popper Phases Sr2SnO4 and Sr3Sn2O7: Relation to the Impedance and Luminescence Behaviors

    Get PDF
    We report that luminescence of Eu3+ ion incorporated into Ruddlesden–Popper phases allows monitoring phase transition in powders (instead of single crystals), in a time-efficient manner (compared to neutron diffraction), and importantly, with greater sensitivity than previous methods. Crystal structure and dielectric response of undoped and 0.5%Eu3+-doped Sr3Sn2O7 ceramics were studied as a function of temperature over the temperature range of 300–800 K. The luminescence studies of 0.5%Eu3+-doped Sr2SnO4 and Sr3Sn2O7 samples were performed in the temperature range of 80–500 K. These results were compared with the respective dependences for the undoped compounds. The structural transformations in 0.5%Eu3+-doped Sr3Sn2O7 were found at 390 and 740 K. The former is associated with the isostructural atomic rearrangement that resulted in a negative thermal expansion along two of three orthorhombic crystallographic axes, while the latter corresponds to the structural transition from the orthorhombic Amam phase to the tetragonal I4/mmm one. A similar temperature behavior with the structural transformations in the same temperature ranges was observed in undoped Sr3Sn2O7, although the values of lattice parameters of the Eu3+-doped and undoped compounds were found to be slightly different indicating an incorporation of europium in the crystal lattice. A dielectric anomaly associated with a structural phase transition was observed in Sr3Sn2O7 at 390 K. Optical measurements performed over a wide temperature range demonstrated a clear correlation between structural transformations in Eu3+-doped Sr2SnO4 and Sr3Sn2O7 and the temperature anomalies of their luminescence spectra, suggesting the efficacy of this method for the determination of subtle phase transformations

    Superhydrophilic surface modification of fabric via coating with cysteic acid mineral oxide

    No full text
    HypothesisCysteic acid functionalized mineral oxide nanoparticles can be used to impart superhydrophilic performance on a range of woven and non-woven fabrics.ExperimentsWoven and non-woven fabrics spray and dip coated alumina and iron oxide based cysteic acid functionalized mineral oxide nanoparticles, were characterized by SEM, EDX and the change in water contact angle was measured or where the increased hydrophilicity was sufficiently great that the time for the adsorption of the water droplet was measured.FindingsFabrics showed a remarkable increase in the hydrophilicity upon coating with cysteic acid functionalized mineral oxide nanoparticles, although alumina-based materials performed better than the iron oxide homologs. Untreated spunlace polypropylene (contact angle = 147.5°) shows the greatest change after CAMO treatment to a water absorption time of 15 ms
    corecore