499 research outputs found

    The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 μm Cluster Luminosity Functions

    Get PDF
    We present a catalog of 99 candidate clusters and groups of galaxies in the redshift range 0.1 1.5). Using the 3.6 μm LF as a proxy for stellar luminosity, we remove this component from the MIR (5.8 and 8.0 μm ) cluster LFs and measure the LF of dusty star formation/AGNs in clusters. We find that at z 0.4, an additional population of dusty starburst galaxies is required to properly model the 8.0 μm LFs. Comparison to field studies at similar redshifts shows a strong differential evolution in the field and cluster 8.0 μm LFs with redshift. At z ~ 0.65 8.0 μm -detected galaxies are more abundant in clusters compared to the field, but thereafter the number of 8.0 μm sources in clusters declines with decreasing redshift, and by z ~ 0.15, clusters are underdense relative to the field by a factor of ~5. The rapid differential evolution between the cluster and field LFs is qualitatively consistent with recent field galaxy studies that show that the star formation rates of galaxies in high-density environments are larger than those in low-density environments at higher redshift

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. II. A Spectroscopic Catalog of Red Galaxies in Galaxy Clusters

    Full text link
    We present a spectroscopic catalog of (mostly) red galaxies in 24 galaxy clusters in the redshift range 0.17 < z < 0.92 obtained with the LRIS instrument on the Keck I telescope. Here we describe the observations and the galaxy spectra, including the discovery of three cD galaxies with LINER emission spectra, and the spectroscopic discovery of four new galaxy-galaxy lenses in cluster environments.Comment: Submitted to ApJ

    Star Formation and AGN Activity in Galaxy Clusters from z=12z=1-2: a Multi-wavelength Analysis Featuring HerschelHerschel/PACS

    Full text link
    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive (1014M\gtrsim10^{14}\,\rm{M_{\odot}}) galaxy clusters at 1<z<1.751<z<1.75. Using new, deep HerschelHerschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z1.4z\gtrsim1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5r<0.5\,Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z1z\sim1. Enhanced SFRs are found in lower mass (10.1<logM/M<10.810.1< \log \rm{M_{\star}}/\rm{M_{\odot}}<10.8) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from z=0.52z=0.5-2, finding an excess AGN fraction at z1z\gtrsim1, suggesting environmental triggering of AGN during this epoch. We argue that our results - a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN - are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.Comment: 26 pages, 14 figures, 6 tables with appendix, accepted for publication in the Astrophysical Journa

    BAFFLES: Bayesian Ages for Field Lower-mass Stars

    Get PDF
    Funding: R.D. acknowledges support from the Fonds de Recherche du Québec. Supported by NSF grants AST-1411868 (E.L.N., B.M.), and AST-1518332 (R.J.D.R.). Supported by NASA grants NNX14AJ80G (E.L.N., B.M.), NNX15AC89G and NNX15AD95G (B.M., R.J.D.R.), 80NSSC17K0535 (B.M., E.L.N., R.J.D.R), and NASA Hubble Fellowship grant HST-HF2-51405.001-A (I.C.).Age is a fundamental parameter of stars, yet in many cases, ages of individual stars are presented without robust estimates of the uncertainty. We have developed a Bayesian framework, BAFFLES, to produce the age posterior for a star from its calcium emission strength (log(R′HK)) or lithium abundance (Li EW) and B − V color. We empirically determine the likelihood functions for calcium and lithium as functions of age from literature measurements of stars in benchmark clusters with well-determined ages. We use a uniform prior on age, which reflects a uniform star formation rate. The age posteriors we derive for several test cases are consistent with literature ages found from other methods. BAFFLES represents a robust method to determine the age posterior probability distribution for any field star with 0.45 ≤ B − V ≤ 0.9 and a measurement of R′HK and/or 0.35 ≤ B − V ≤ 1.9 and measured Li EW. We compile colors, R′HK, and Li EW from over 2630 nearby field stars from the literature, and present the derived BAFFLES age posterior for each star.PostprintPeer reviewe

    The Mid-Infrared Environments of High-Redshift Radio Galaxies

    Full text link
    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2<z<3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5]>-0.1 (AB), in the fields of 48 radio galaxies at 1.2<z<3. This simple IRAC color selection is effective at identifying galaxies at z>1.2. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1arcmin (i.e.,~0.5Mpc at 1.2<z<3) of the radio galaxy to the 5sigma flux density limits of our IRAC data (f3.6=11.0uJy, f4.5=13.4uJy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z>1.2.Comment: 14 pages, 7 figures, 3 tables, accepted for publication in Ap
    corecore