368 research outputs found

    Interprofessional clinical placement involving speech pathology and counselling psychology

    Get PDF
    This paper examines the interprofessional learning of a speech pathology and counselling psychology student in an interprofessional placement within an institution of the Department of Corrective Services in Perth, Western Australia. The institution is a pre-release centre that promotes rehabilitation and community reintegration in which up to six women are able to have their children, aged 0–4 years of age, live with them. The students provided a program to the mothers to facilitate development of a healthy mother–child relationship and the children’s communication development. This paper utilised qualitative descriptive analysis to explore two examples of student learning and found perceived growth in the students’ clinical skills, their understanding of the other profession and the concept of interprofessional collaboration. While students experience growth in a range of placements, the journey described in this paper is unusual in both the nature of the student collaboration and the placement itself. The research highlights the importance of joint clinical placements in the development of interprofessional collaborative relationships

    Interprofessional clinical placement involving speech pathology and counselling psychology

    Get PDF
    This paper examines the interprofessional learning of a speech pathology and counselling psychology student in an interprofessional placement within an institution of the Department of Corrective Services in Perth, Western Australia. The institution is a pre-release centre that promotes rehabilitation and community reintegration in which up to six women are able to have their children, aged 0–4 years of age, live with them. The students provided a program to the mothers to facilitate development of a healthy mother–child relationship and the children’s communication development. This paper utilised qualitative descriptive analysis to explore two examples of student learning and found perceived growth in the students’ clinical skills, their understanding of the other profession and the concept of interprofessional collaboration. While students experience growth in a range of placements, the journey described in this paper is unusual in both the nature of the student collaboration and the placement itself. The research highlights the importance of joint clinical placements in the development of interprofessional collaborative relationships

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    PSR J1016-5857: a young radio pulsar with possible supernova remnant, X-ray, and gamma-ray associations

    Full text link
    We report the discovery of a young and energetic pulsar in the Parkes multibeam survey of the Galactic plane. PSR J1016-5857 has a rotation period of 107 ms and period derivative of 8e-14, implying a characteristic age of 21 kyr and spin-down luminosity of 2.6e36 erg/s. The pulsar is located just outside, and possibly interacting with, the shell supernova remnant G284.3-1.8. Archival X-ray data show a source near the pulsar position which is consistent with emission from a pulsar wind nebula. The pulsar is also located inside the error box of the unidentified EGRET source 3EG J1013-5915, for which it represents a plausible counterpart.Comment: 5 pages, 3 included figures, accepted for publication by ApJ Letter

    A Binary Millisecond Pulsar in Globular Cluster NGC6544

    Get PDF
    We report the detection of a new 3.06 ms binary pulsar in the globular cluster NGC6544 using a Fourier-domain ``acceleration'' search. With an implied companion mass of ~0.01 solar masses and an orbital period of only P_b~1.7 hours, it displays very similar orbital properties to many pulsars which are eclipsed by their companion winds. The orbital period is the second shortest of known binary pulsars after 47 Tuc R. The measured flux density of 1.3 +/- 0.4 mJy at 1332 MHz indicates that the pulsar is almost certainly the known steep-spectrum point source near the core of NGC6544.Comment: Accepted by ApJ Letters on 11 October 2000, 5 page

    Discovery of Five Binary Radio Pulsars

    Get PDF
    We report on five binary pulsars discovered in the Parkes multibeam Galactic plane survey. All of the pulsars are old, with characteristic ages 1-11 Gyr, and have relatively small inferred magnetic fields, 5-90e8 G. The orbital periods range from 1.3 to 15 days. As a group these objects differ from the usual low-mass binary pulsars (LMBPs): their spin periods of 9-88 ms are relatively long; their companion masses, 0.2-1.1 Msun, are, in at least some cases, suggestive of CO or more massive white dwarfs; and some of the orbital eccentricities, 1e-5 < e < 0.002, are unexpectedly large. We argue that these observed characteristics reflect binary evolution that is significantly different from that of LMBPs. We also note that intermediate-mass binary pulsars apparently have a smaller scale-height than LMBPs.Comment: 5 pages, 4 embedded EPS figs, accepted for publication by ApJ Letter

    TEMPO2, a new pulsar timing package. I: Overview

    Full text link
    Contemporary pulsar timing experiments have reached a sensitivity level where systematic errors introduced by existing analysis procedures are limiting the achievable science. We have developed tempo2, a new pulsar timing package that contains propagation and other relevant effects implemented at the 1ns level of precision (a factor of ~100 more precise than previously obtainable). In contrast with earlier timing packages, tempo2 is compliant with the general relativistic framework of the IAU 1991 and 2000 resolutions and hence uses the International Celestial Reference System, Barycentric Coordinate Time and up-to-date precession, nutation and polar motion models. Tempo2 provides a generic and extensible set of tools to aid in the analysis and visualisation of pulsar timing data. We provide an overview of the timing model, its accuracy and differences relative to earlier work. We also present a new scheme for predictive use of the timing model that removes existing processing artifacts by properly modelling the frequency dependence of pulse phase.Comment: Accepted by MNRA

    High-Energy Gamma-Ray Observations of Two Young, Energetic Radio Pulsars

    Get PDF
    We present results of Compton Gamma-Ray Observatory EGRET observations of the unidentified high-energy gamma-ray sources 2EG J1049-5847 (GEV J1047-5840, 3EG J1048-5840) and 2EG J1103-6106 (3EG J1102-6103). These sources are spatially coincident with the young, energetic radio pulsars PSRs B1046-58 and J1105-6107, respectively. We find evidence for an association between PSR B1046-58 and 2EG J1049-5847. The gamma-ray pulse profile, obtained by folding time-tagged photons having energies above 400 MeV using contemporaneous radio ephemerides, has probability of arising by chance of 1.2E-4 according to the binning-independent H-test. A spatial analysis of the on-pulse photons reveals a point source of equivalent significance 10.2 sigma. Off-pulse, the significance drops to 5.8 sigma. Archival ASCA data show that the only hard X-ray point source in the 95% confidence error box of the gamma-ray source is spatially coincident with the pulsar within the 1' uncertainty (Pivovaroff, Kaspi & Gotthelf 1999). The double peaked gamma-ray pulse morphology and leading radio pulse are similar to those seen for other gamma-ray pulsars and are well-explained in models in which the gamma-ray emission is produced in charge-depleted gaps in the outer magnetosphere. The inferred pulsed gamma-ray flux above 400 MeV, (2.5 +/- 0.6) x 10E-10 erg/cm^2/s, represents 0.011 +/- 0.003 of the pulsar's spin-down luminosity, for a distance of 3 kpc and 1 sr beaming. For PSR J1105-6107, light curves obtained by folding EGRET photons using contemporaneous radio ephemerides show no significant features. We conclude that this pulsar converts less than 0.014 of its spin-down luminosity into E > 100 MeV gamma-rays beaming in our direction (99% confidence), assuming a distance of 7 kpc, 1 sr beaming and a duty cycle of 0.5.Comment: Accepted for publication in the Astrophysical Journa

    Discovery of a Young Radio Pulsar in a Relativistic Binary Orbit

    Get PDF
    We report on the discovery of PSR J1141-6545, a radio pulsar in an eccentric, relativistic 5-hr binary orbit. The pulsar shows no evidence for being recycled, having pulse period P = 394 ms, characteristic age tau_c = 1.4 x 10^6 yr, and inferred surface magnetic dipole field strength B = 1.3 x 10^12 G. From the mass function and measured rate of periastron advance, we determine the total mass in the system to be (2.300 +/- 0.012) solar masses, assuming that the periastron advance is purely relativistic. Under the same assumption, we constrain the pulsar's mass to be M_p < 1.348 solar masses and the companion's mass to be M_c > 0.968 solar masses (both 99% confidence). Given the total system mass and the distribution of measured neutron star masses, the companion is probably a massive white dwarf which formed prior to the birth of the pulsar. Optical observations can test this hypothesis.Comment: 18 pages, 4 figures, Accepted for Publication in Ap

    RXTE Absolute Timing Results for the Pulsars B1821-24 and B1509-58

    Get PDF
    Observations with the Rossi X-ray Timing Explorer and the Jodrell Bank, Parkes, and Green Bank telescopes have enabled us to determine the time delay between radio and X-ray pulses in the two isolated pulsars B1821-24 and B1509-58. For the former we find that the narrow X-ray and radio pulse components are close to being coincident in time, with the radio peak leading by 0.02 period (60 +/- 20 microsec), while the wide X-ray pulse component lags the last of the two wider radio components by about 0.08 period. For the latter pulsar we find, using the standard value for the dispersion measure, that the X-ray pulse lags the radio by about 0.27 period, with no evidence for any energy-dependence in the range 2-100 keV. However, uncertainties in the history of the dispersion measure for this pulsar make a comparison with previous results difficult. It is clear that there are no perceptable variations in either the lag or the dispersion measure at time scales of a year or less.Comment: 20 pages including 6 figures, accepted by Astrophysical Journa
    • …
    corecore