10 research outputs found

    Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways

    Get PDF
    The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway

    Signal transduction cross talk mediated by Jun N-terminal kinase-interacting protein and insulin receptor substrate scaffold protein complexes

    Get PDF
    Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins

    A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Get PDF
    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH2-terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway

    JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory

    Get PDF
    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JIP1 scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDA receptor currents, increased NMDA receptor-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDA receptor-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT: The results of this study demonstrate that JNK activation induced by the JIP1 scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study reports the identification of JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDA receptor-dependent synaptic plasticity and memory

    Requirement of JIP1-Mediated c-Jun N-Terminal Kinase Activation for Obesity-Induced Insulin Resistance▿ §

    Get PDF
    The c-Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) has been proposed to act as a scaffold protein that mediates JNK activation. However, recent studies have implicated JIP1 in multiple biochemical processes. Physiological roles of JIP1 that are related to the JNK scaffold function of JIP1 are therefore unclear. To test the role of JIP1 in JNK activation, we created mice with a germ line point mutation in the Jip1 gene (Thr103 replaced with Ala) that selectively blocks JIP1-mediated JNK activation. These mutant mice exhibit a severe defect in JNK activation caused by feeding of a high-fat diet. The loss of JIP1-mediated JNK activation protected the mutant mice against obesity-induced insulin resistance. We conclude that JIP1-mediated JNK activation plays a critical role in metabolic stress regulation of the JNK signaling pathway

    JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate

    Get PDF
    The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway is implicated in cancer, but the role of JNK in tumorigenesis is poorly understood. Here, we demonstrate that the JNK signaling pathway reduces the development of invasive adenocarcinoma in the phosphatase and tensin homolog (Pten) conditional deletion model of prostate cancer. Mice with JNK deficiency in the prostate epithelium (ΔJnk ΔPten mice) develop androgen-independent metastatic prostate cancer more rapidly than control (ΔPten) mice. Similarly, prevention of JNK activation in the prostate epithelium (ΔMkk4 ΔMkk7 ΔPten mice) causes rapid development of invasive adenocarcinoma. We found that JNK signaling defects cause an androgen-independent expansion of the immature progenitor cell population in the primary tumor. The JNK-deficient progenitor cells display increased proliferation and tumorigenic potential compared with progenitor cells from control prostate tumors. These data demonstrate that the JNK and PTEN signaling pathways can cooperate to regulate the progression of prostate neoplasia to invasive adenocarcinoma

    Early pregnancy maternal endocrine insulin-like growth factor I programs the placenta for increased functional capacity throughout gestation

    No full text
    Copyright © 2007 by The Endocrine SocietyIn early pregnancy, the concentrations of IGFs increase in maternal blood. Treatment of pregnant guinea pigs with IGFs in early to midpregnancy enhances placental glucose transport and fetal growth and viability near term. In the current study, we determined whether exogenous IGFs altered placental gene expression, transport, and nutrient partitioning during treatment, which may then persist. Guinea pigs were infused with IGF-I, IGF-II (both 1 mg/kg x d) or vehicle sc from d 20-35 of pregnancy and killed on d 35 (term is 70 d) after administration of [(3)H]methyl-D-glucose (MG) and [(14)C]amino-isobutyric acid (AIB). IGF-I increased placental and fetal weights (+15 and +17%, respectively) and MG and AIB uptake by the placenta (+42 and +68%, respectively) and fetus (+59 and +90%, respectively). IGF-I increased placental mRNA expression of the amino acid transporter gene Slc38a2 (+780%) and reduced that of Igf2 (-51%), without altering the glucose transporter Slc2a1 or Vegf and Igf1 genes. There were modest effects of IGF-I treatment on MG and AIB uptake by individual maternal tissues and no effect on plasma glucose, total amino acids, free fatty acids, triglycerides, and cholesterol concentrations. IGF-II treatment of the mother did not alter any maternal, fetal or placental parameter. In conclusion, exogenous IGF-I, but not IGF-II, in early pregnancy increases placental transport of MG and AIB, enhancing midgestational fetal nutrient uptake and growth. This suggests that early pregnancy rises in maternal circulating IGF-I play a major role in regulating placental growth and functional development and thus fetal growth throughout gestation.Amanda N. Sferruzzi-Perri, Julie A. Owens, Prue Standen, Robyn L. Taylor, Jeffrey S. Robinson and Claire T. Robert

    1997 Amerasia Journal

    No full text
    corecore