13 research outputs found

    No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels.

    Get PDF
    Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were associated with 2-h glucose (β = 0.06-0.12 mmol/allele, P ≤ 1.53 × 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    Association analysis of 29,956 individuals confirms that a low-frequency variant at <i>CCND2</i> halves the risk of type 2 diabetes by enhancing insulin secretion

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tThis is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.This article contains Supplementary Data online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-1456/-/DC1.A recent study identified a low-frequency variant at CCND2 associated with lower risk of type 2 diabetes, enhanced insulin response to a glucose challenge, higher height, and, paradoxically, higher BMI. We aimed to replicate the strength and effect size of these associations in independent samples and to assess the underlying mechanism. We genotyped the variant in 29,956 individuals and tested its association with type 2 diabetes and related traits. The low-frequency allele was associated with a lower risk of type 2 diabetes (OR 0.53; P = 2 × 10(-13); 6,647 case vs. 12,645 control subjects), higher disposition index (β = 0.07 log10; P = 2 × 10(-11); n = 13,028), and higher Matsuda index of insulin sensitivity (β = 0.02 log10; P = 5 × 10(-3); n = 13,118) but not fasting proinsulin (β = 0.01 log10; P = 0.5; n = 6,985). The low frequency allele was associated with higher adult height (β = 1.38 cm; P = 6 × 10(-9); n = 13,927), but the association of the variant with BMI (β = 0.36 kg/m(2); P = 0.02; n = 24,807), estimated in four population-based samples, was less than in the original publication where the effect estimate was biased by analyzing case subjects with type 2 diabetes and control subjects without diabetes separately. Our study establishes that a low-frequency allele in CCND2 halves the risk of type 2 diabetes primarily through enhanced insulin secretion.ERCWellcome TrustMRCAcademy of FinlandUniversity of Eastern FinlandSigrid Juselius FoundationUniversity of Bristol (ALSPAC)GoDARTSNovo Nordisk Foundation Center for Basic Metabolic ResearchLundbeck FoundationDanish Agency for Science, Technology and InnovationPhD School of Molecular MetabolismUniversity of Southern DenmarkCopenhagen Graduate School of Health and Medical SciencesDanish Research CouncilDanish Centre for Health Technology AssessmentResearch Foundation of Copenhagen CountyMinistry of Internal Affairs and HealthDanish Heart FoundationAugustinus FoundationIb Henriksen FoundationBecket Foundatio

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    corecore