19 research outputs found

    Differential Development of Human Brain White Matter Tracts

    Get PDF
    Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity. Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives, despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy. Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted ‘U-shape’), with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant diffusion tensor imaging datasets in normative and neuropsychiatric samples

    Human Connectomics across the Life Span

    No full text
    Connectomics has enhanced our understanding of neurocognitive development and decline by the integration of network sciences into studies across different stages of the human life span. However, these studies commonly occurred independently, missing the opportunity to test integrated models of the dynamical brain organization across the entire life span. In this review article, we survey empirical findings in life-span connectomics and propose a generative framework for computationally modeling the connectome over the human life span. This framework highlights initial findings that across the life span, the human connectome gradually shifts from an &#39;anatomically driven&#39; organization to one that is more &#39;topological&#39;. Finally, we consider recent advances that are promising to provide an integrative and systems perspective of human brain plasticity as well as underscore the pitfalls and challenges.</p

    Neural correlates of self-perceptions in adolescents with major depressive disorder

    Get PDF
    Alteration in self-perception is a salient feature in major depression. Hyperactivity of anterior cortical midline regions has been implicated in this phenomenon in depressed adults. Here, we extend this work to depressed adolescents during a developmental time when neuronal circuitry underlying the sense of self matures by using task-based functional magnetic resonance imaging (fMRI) and connectivity analyses. Twenty-three depressed adolescents and 18 healthy controls (HC) viewed positive and negative trait words in a scanner and judged whether each word described them (‘self’ condition) or was a good trait to have (‘general’ condition). Self-perception scores were based on participants’ endorsements of positive and negative traits during the fMRI task. Depressed adolescents exhibited more negative self-perceptions than HC. Both groups activated cortical midline regions in response to self-judgments compared to general-judgments. However, depressed adolescents recruited the posterior cingulate cortex/precuneus more for positive self-judgments. Additionally, local connectivity of the dorsal medial prefrontal cortex was reduced during self-reflection in depressed adolescents. Our findings highlight differences in self-referential processing network function between depressed and healthy adolescents and support the need for further investigation of brain mechanisms associated with the self, as they may be paramount to understanding the etiology and development of major depressive disorder

    A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics

    No full text
    Functional connectomics is one of the most rapidly expanding areas of neuroimaging research. Yet, concerns remain regarding the use of resting-state fMRI (R-fMRI) to characterize inter-individual variation in the functional connectome. In particular, recent findings that "micro" head movements can introduce artifactual inter-individual and group-related differences in R-fMRI metrics have raised concerns. Here, we first build on prior demonstrations of regional variation in the magnitude of framewise displacements associated with a given head movement, by providing a comprehensive voxel-based examination of the impact of motion on the BOLD signal (i.e., motion-BOLD relationships). Positive motion-BOLD relationships were detected in primary and supplementary motor areas, particularly in low motion datasets. Negative motion-BOLD relationships were most prominent in prefrontal regions, and expanded throughout the brain in high motion datasets (e.g., children). Scrubbing of volumes with FD > 0.2 effectively removed negative but not positive correlations; these findings suggest that positive relationships may reflect neural origins of motion while negative relationships are likely to originate from motion artifact. We also examined the ability of motion correction strategies to eliminate artifactual differences related to motion among individuals and between groups for a broad array of voxel-wise R-fMRI metrics. Residual relationships between motion and the examined R-fMRI metrics remained for all correction approaches, underscoring the need to covary motion effects at the group-level. Notably, global signal regression reduced relationships between motion and inter-individual differences in correlation-based R-fMRI metrics; Z-standardization (mean-centering and variance normalization) of subject-level maps for R-fMRI metrics prior to group-level analyses demonstrated similar advantages. Finally, our test-retest (TRT) analyses revealed significant motion effects on TRT reliability for R-fMRI metrics. Generally, motion compromised reliability of R-fMRI metrics, with the exception of those based on frequency characteristics particularly, amplitude of low frequency fluctuations (ALFF). The implications of our findings for decision-making regarding the assessment and correction of motion are discussed, as are insights into potential differences among volume-based metrics of motion. (C) 2013 Elsevier Inc. All rights reserved

    Measurement reliability for individual differences in multilayer network dynamics: Cautions and considerations

    No full text
    Multilayer network models have been proposed as an effective means of capturing the dynamic configuration of distributed neural circuits and quantitatively describing how communities vary over time. Beyond general insights into brain function, a growing number of studies have begun to employ these methods for the study of individual differences. However, test-retest reliabilities for multilayer network measures have yet to be fully quantified or optimized, potentially limiting their utility for individual difference studies. Here, we systematically evaluated the impact of multilayer community detection algorithms, selection of network parameters, scan duration, and task condition on test-retest reliabilities of multilayer network measures (i.e., flexibility, integration, and recruitment). A key finding was that the default method used for community detection by the popular generalized Louvain algorithm can generate erroneous results. Although available, an updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature. Beyond the algorithm, the present work identified parameter selection as a key determinant of test-retest reliability; however, optimization of these parameters and expected reliabilities appeared to be dataset-specific. Once parameters were optimized, consistent with findings from the static functional connectivity literature, scan duration was a much stronger determinant of reliability than scan condition. When the parameters were optimized and scan duration was sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were reliable, although reliability in the movie watching condition was significantly higher than in the other three tasks. The minimal data requirement for achieving reliable measures for the movie watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field against the use of default parameters without optimization based on the specific datasets to be employed - a process likely to be limited for most due to the lack of test-retest samples to enable parameter optimization

    Assessment of the impact of shared brain imaging data on the scientific literature

    No full text
    Data sharing is increasingly recommended as a means of accelerating science by facilitating collaboration, transparency, and reproducibility. While few oppose data sharing philosophically, a range of barriers deter most researchers from implementing it in practice. To justify the significant effort required for sharing data, funding agencies, institutions, and investigators need clear evidence of benefit. Here, using the International Neuroimaging Data-sharing Initiative, we present a case study that provides direct evidence of the impact of open sharing on brain imaging data use and resulting peer-reviewed publications. We demonstrate that openly shared data can increase the scale of scientific studies conducted by data contributors, and can recruit scientists from a broader range of disciplines. These findings dispel the myth that scientific findings using shared data cannot be published in high-impact journals, suggest the transformative power of data sharing for accelerating science, and underscore the need for implementing data sharing universally
    corecore