1,256 research outputs found

    Gate-defined graphene double quantum dot and excited state spectroscopy

    Full text link
    A double quantum dot is formed in a graphene nanoribbon device using three top gates. These gates independently change the number of electrons on each dot and tune the inter-dot coupling. Transport through excited states is observed in the weakly coupled double dot regime. We extract from the measurements all relevant capacitances of the double dot system, as well as the quantized level spacing

    Transport through open quantum dots: making semiclassics quantitative

    Get PDF
    We investigate electron transport through clean open quantum dots (quantum billiards). We present a semiclassical theory that allows to accurately reproduce quantum transport calculations. Quantitative agreement is reached for individual energy and magnetic field dependent elements of the scattering matrix. Two key ingredients are essential: (i) inclusion of pseudo-paths which have the topology of linked classical paths resulting from diffraction in addition to classical paths and (ii) a high-level approximation to diffractive scattering. Within this framework of the pseudo-path semiclassical approximation (PSCA), typical shortcomings of semiclassical theories such as violation of the anti-correlation between reflection and transmission and the overestimation of conductance fluctuations are overcome. Beyond its predictive capabilities the PSCA provides deeper insights into the quantum-to-classical crossover.Comment: 20 pages, 19 figure

    Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature

    Full text link
    We present a new fabrication method of graphene spin-valve devices which yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si++^{++}/SiO2_2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi- and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10ÎĽ\mum combined with carrier mobilities exceeding 20,000 cm2^2/Vs.Comment: 15 pages, 5 figure

    Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2

    Full text link
    Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was pre-assigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.Comment: 27 pages, 8 figure

    Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

    Get PDF
    The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood.Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control.We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells

    Switchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States

    Full text link
    We report transport measurements on a quantum dot in a partly suspended carbon nanotube. Electrostatic tuning allows us to modify and even switch 'on' and 'off' the coupling to the quantized stretching vibration across several charge states. The magnetic-field dependence indicates that only the two-electron spin-triplet excited state couples to the mechanical motion, indicating mechanical coupling to both the valley degree of freedom and the exchange interaction, in contrast to standard models

    Prediagnostic Plasma Vitamin D Metabolites and Mortality among Patients with Prostate Cancer

    Get PDF
    Laboratory evidence suggests that vitamin D might influence prostate cancer prognosis.We examined the associations between prediagnostic plasma levels of 25(OH)vitamin D [25(OH)D] and 1,25(OH)(2) vitamin D [1,25(OH)(2)D] and mortality among 1822 participants of the Health Professionals Follow-up Study and Physicians' Health Study who were diagnosed with prostate cancer. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) of total mortality (n = 595) and lethal prostate cancer (death from prostate cancer or development of bone metastases; n = 202). In models adjusted for age at diagnosis, BMI, physical activity, and smoking, we observed a HR of 1.22 (95% CI: 0.97, 1.54) for total mortality, comparing men in the lowest to the highest quartile of 25(OH)D. There was no association between 1,25(OH)(2)D and total mortality. Men with the lowest 25(OH)D quartile were more likely to die of their cancer (HR: 1.59; 95% CI: 1.06, 2.39) compared to those in the highest quartile (P(trend) = 0.006). This association was largely explained by the association between low 25(OH)D levels and advanced cancer stage and higher Gleason score, suggesting that these variables may mediate the influence of 25(OH)D on prognosis. The association also tended to be stronger among patients with samples collected within five years of cancer diagnosis. 1,25(OH)(2)D levels were not associated with lethal prostate cancer.Although potential bias of less advanced disease due to more screening activity among men with high 25(OH)D levels cannot be ruled out, higher prediagnostic plasma 25(OH)D might be associated with improved prostate cancer prognosis

    Franck-Condon blockade in suspended carbon nanotube quantum dots

    Get PDF
    Understanding the influence of vibrational motion of the atoms on electronic transitions in molecules constitutes a cornerstone of quantum physics, as epitomized by the Franck-Condon principle of spectroscopy. Recent advances in building molecular-electronics devices and nanoelectromechanical systems open a new arena for studying the interaction between mechanical and electronic degrees of freedom in transport at the single-molecule level. The tunneling of electrons through molecules or suspended quantum dots has been shown to excite vibrational modes, or vibrons. Beyond this effect, theory predicts that strong electron-vibron coupling dramatically suppresses the current flow at low biases, a collective behaviour known as Franck-Condon blockade. Here we show measurements on quantum dots formed in suspended single-wall carbon nanotubes revealing a remarkably large electron-vibron coupling and, due to the high quality and unprecedented tunability of our samples, admit a quantitative analysis of vibron-mediated electronic transport in the regime of strong electron-vibron coupling. This allows us to unambiguously demonstrate the Franck-Condon blockade in a suspended nanostructure. The large observed electron-vibron coupling could ultimately be a key ingredient for the detection of quantized mechanical motion. It also emphasizes the unique potential for nanoelectromechanical device applications based on suspended graphene sheets and carbon nanotubes.Comment: 7 pages, 3 figure

    Dietary fat intake and lung cancer risk: a pooled analysis

    No full text
    Purpose Dietary fat may play a role in lung carcinogenesis. Findings from epidemiologic studies, however, remain inconsistent. In this pooled analysis of 10 prospective cohort studies from the United States, Europe, and Asia, we evaluated the associations of total and specific types of dietary fat with lung cancer risk. Methods Cox regression was used to estimate hazard ratios (HRs) and 95% CIs in each cohort. Study-specific risk estimates were pooled by random- or fixed-effects meta-analysis. The first 2 years of follow-up were excluded to address potential influence of preclinical dietary changes. Results Among 1,445,850 participants, 18,822 incident cases were identified (mean follow-up, 9.4 years). High intakes of total and saturated fat were associated with an increased risk of lung cancer (for highest v lowest quintile: HR, 1.07 and 1.14, respectively; 95% CI, 1.00 to 1.15 and 1.07 to 1.22, respectively; P for trend for both < .001). The positive association of saturated fat was more evident among current smokers (HR, 1.23; 95% CI, 1.13 to 1.35; P for trend < .001) than former/never smokers (P for interaction = .004), and for squamous cell and small cell carcinoma (HR, 1.61 and 1.40, respectively; 95% CI, 1.38 to 1.88 and 1.17 to 1.67, respectively; P for trend for both < .001) than other histologic types (P for heterogeneity < .001). In contrast, a high intake of polyunsaturated fat was associated with a decreased risk of lung cancer (HR, 0.92; 95% CI, 0.87 to 0.98 for highest v lowest quintile; P for trend = .02). A 5% energy substitution of saturated fat with polyunsaturated fat was associated with a 16% to 17% lower risk of small cell and squamous cell carcinoma. No associations were found for monounsaturated fat. Conclusion Findings from this large, international cohort consortium suggest that modifying dietary fat intake (ie, replacing saturated fat with polyunsaturated fat) may reduce lung cancer risk, particularly among smokers and for squamous cell and small cell carcinoma
    • …
    corecore