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Understanding  the  influence  of  vibrational  motion  of  the  atoms  on  electronic  transitions  in 
molecules  constitutes  a  cornerstone  of  quantum physics,  as  epitomized  by  the  Franck-Condon 
principle1,2 of  spectroscopy.  Recent  advances  in  building  molecular-electronics  devices3 and 
nanoelectromechanical systems4 open a new arena for studying the interaction between mechanical 
and  electronic  degrees  of  freedom  in  transport  at  the  single-molecule  level.  The  tunneling  of 
electrons through molecules or suspended quantum dots5,6 has been shown to excite  vibrational 
modes,  or  vibrons7-9,6.  Beyond  this  effect,  theory  predicts  that  strong  electron-vibron  coupling 
dramatically suppresses the current flow at low biases, a collective behaviour known as Franck-
Condon blockade10. Here we show measurements on quantum dots formed in suspended single-wall 
carbon  nanotubes  revealing  a  remarkably  large  electron-vibron  coupling  and,  due to  the  high 
quality  and  unprecedented  tunability  of  our  samples,  admit  a  quantitative  analysis  of  vibron-
mediated electronic transport in the regime of strong electron-vibron coupling. This allows us to 
unambiguously demonstrate the Franck-Condon blockade in a suspended nanostructure. The large 
observed  electron-vibron  coupling  could  ultimately  be  a  key  ingredient  for  the  detection  of 
quantized mechanical motion11,12. It also emphasizes the unique potential for nanoelectromechanical 
device applications based on suspended graphene sheets and carbon nanotubes.

In a polar semiconductor, a conduction electron deforms the surrounding lattice to form a polaron state13. 
The  formation  of  this  quasi-particle,  by  combining  an  electron  and  a  cloud  of  lattice  vibrations,  or 
phonons, strongly influences the transport properties. The possibility for localization of strongly coupled 
polarons was suggested by Landau more than 70 years ago13. Recently, Koch et al. predicted that a related 
trapping  of  heavy polarons  can  occur  in  a  quantum dot  (QD) formed  in  a  mechanically  suspended 
nanostructure10.  In  such  a  nanoelectromechanical  system  (NEMS),  the  vibrational  modes  of  the 
nanostructure  can  be  strongly  affected  by  the  presence  of  electrons  in  the  QD,  as  they  deform the 
embedding medium. For strong electron-phonon coupling, the deformation effectively blocks electronic 
transport, termed Franck-Condon (FC) blockade. By analysing electronic transport through a suspended 
carbon nanotube (CNT) quantum dot over a wide range of electronic states,  we are able to highlight 
generic features  of  vibron-assisted  electronic  transport,  and  unambiguously  confirm the  FC blockade 
scenario.

Scanning electron microscope images and a scheme of our suspended CNT quantum dot device 
are shown in Figs. 1a, 1b and 1c. The CNT is electrically and mechanically connected to both source (S) 
and drain (D) contacts, while the central  electrode acts as a suspended top-gate (TG). A quantum dot in 
the CNT is formed between defects14, which are presumably created during the release process and act as 
local barriers. The  double top- and back-gate configuration allows us to determine the location of the QD 
below the TG (see Fig. 1c and supplementary material).

The exceptional quality of our sample, which is crucial for this investigation, is revealed by the 
well  resolved  observation  of  multiple  four-fold  degeneracies  of  electronic  states  in  the  large-scale 
presentation of our data (Fig.  1d). This stems from the combined spin and valley degeneracies in clean 
CNT15-17,  and  allows  us  to  fully  characterize  the  electronic  properties  of  our  device,  including  the 
electronic confinement energy ΔEelec = 6.8 ± 2.5 meV (see supplementary material).

At  a  finer  energy scale (see  Fig.  2),  all  the  probed Coulomb diamonds show several  striking 
generic  features.  1)  Quasi-periodic  lines  running  parallel  to  the  edges  of  the  Coulomb  diamonds, 
corresponding  to  excited  states,  appear  ubiquitously. 2)  For  increasing  temperatures,  we observe the 
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appearance of absorption sideband peaks within the Coulomb blockaded regions.  3) At the edge of the 
diamonds,  there  is  a  pronounced  current  suppression compared to  the  current  magnitude  for  excited 
states. 4) Most diamonds show a significant apparent shift of their tip between positive and negative bias. 
5) Finally, all the probed diamonds show ubiquitous negative differential conductance (NDC) appearing 
in between the excited states. We will show that most of these features are generic for transport-induced 
vibron excitations and are signatures of the strong electron-vibron coupling in our system.

 Quasi-periodic excited states have been reported in previous experiments on suspended quantum 
dots. They have been interpreted as being due to the excitation of quantized phonons in the nanostructure, 
called vibrons7-9,6: when the bias voltage matches a multiple of the energy of a vibron, ℏ0, transport is 
enhanced by emission of a vibron. This interpretation is confirmed in our data since the energy spacing 
between  these excited states  ΔEvib =0.8  ±  0.2 meV is much lower than the measured electronic level 
spacing. In addition, Fig.  2b shows that this energy is constant over a wide range of gate voltages and 
does not depend on the electronic structure of the quantum dot.

The bosonic origin of the excitations is further demonstrated by the temperature dependence of the 
data.  As temperature is increased, we observe additional excited states appearing within the Coulomb 
blockade  regime  (Figs.  2c to  2f),  similar  to  anti-Stokes  resonances  in  Raman  spectroscopy.  This 
behaviour,  not  reported  in  previous experiments,  is  expected for  vibronic  excited  states  since  higher 
vibrational states become populated at elevated temperature. As a consequence, electronic transport is 
enabled even in the Coulomb-blockade regime by absorption of a vibron. The quantitative analysis of the 
peak magnitude as a function of temperature confirms the bosonic origin of the absorption peak (Fig. 2g).

The  very  observation  of  vibrational  sidebands  is  a  signature  of  rather  strong  electron-vibron 
couplings in our CNT quantum dot. This is further highlighted by the current suppression at low bias 
detected in all the probed diamonds. 

Indeed, our data unambiguously confirm that this is a direct demonstration of the so-called FC 
blockade10. When tunnelling onto the dot, the electron shifts  the equilibrium coordinate of the vibron 
oscillator by an amount proportional to the electron-vibron coupling (Fig. 3a). The transition probability 
of this tunnelling process is proportional to the square of the overlap between the vibronic wave functions 
before and after tunnelling. In spectroscopy, this principle is well known as FC principle1,2 and explains 
the  magnitude  of  peaks  in  absorption  spectra.  Since  the  overlap  of  low-lying  vibronic  states  is 
exponentially sensitive to this geometrical displacement, the ground-state-to-ground-state transition for 
vibrons is exponentially suppressed for strong electron-vibron coupling. This leads to the FC blockade of 
the current at  low bias. At the same time, the overlap between the vibronic ground state  with highly 
excited  states,  whose  wave functions  are  widely spread  in space,  is  still  significant.  This  allows for 
tunnelling while exciting vibrons,  as long as the bias is large enough to compensate for the vibronic 
energy difference, causing the observed vibrational sidebands.

This interpretation provides a quantitative understanding of the experimental data. The apparent 
shift  of  the  Coulomb  diamond  tips  for  positive  and  negative  bias  observed  in  many  cases  in  our 
experiment (Fig. 3c) and others5, is explained by the asymmetric tunnel coupling of the QD with source 
and drain (Fig.  3e). The smaller tunnel coupling determines the current limiting tunnelling process, and 
energetic considerarions (sketched in Fig. 3e) imply that the edge of the diamond is due to ground-state-
to-ground-state transitions on one side and due to ground-state-to-excited-state transitions for the other. 
As a  result,  the solution (see Fig.  3d) of the  corresponding rate  equations  in Fig.  3e reproduces the 
experiment in Fig. 3c quite accurately.

In order to  extract  the electron-vibron coupling  g despite  the above asymmetry,  we study the 
differential  conductance  at  the gate  voltage corresponding to  the diamond tip  (Figs.  3f and  3g).  For 
equilibrated phonons,  the Franck-Condon theory predicts differential conductance peaks following the 
progression:
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with n the difference in vibron quantum numbers and |M0n| the overlap between vibronic states with 0 and 
n vibrons. By fitting the maxima of dI/dV with this expression (Figs.  3f and  3g), we find very good 
agreement for most measured diamonds. Our measurement not only shows a current suppression at low 
bias5,6 but rather matches the whole progression for excited states, proving global consistency with the 
Franck-Condon picture. We deduce a large value for the electron-vibron coupling parameter,  g = 3.3  ± 
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0.9  over  the  whole  set  of  Coulomb  diamonds.  This  is  about  a  factor  3  larger  than  in  previous 
measurements6.

In order to obtain a theoretical understanding of the large electron-vibron coupling constant  g in 
the QD, we consider the intrinsic electron-phonon coupling of the underlying CNT. This turns out to be 
dominant  compared  to  previously  considered  extrinsic  electrostatic  coupling  mechanisms6,18.  The 
coupling originates from (a) the modified hopping associated with changes in the C-C bond lengths and 
(b) the deformation potential due to local area variations; the deformation potential coupling constant gD ≈ 
30 eV is about an order of magnitude larger than the hopping-induced one19,20.

When combined with symmetry considerations, the existence of these two coupling mechanisms 
has  several  important  consequences  for  the  coupling  strengths  of  the  various  CNT  vibron  modes. 
Longitudinal stretching modes (LSM) and radial breathing modes couple most strongly. Their associated 
lattice deformations involve local area variations and produce a linear shift of the electronic energies, 
resulting in a linear deformation potential interaction. Twist modes also couple linearly, but they are area 
preserving and couple only via the weaker hopping-induced mechanism. Finally, bending modes have 
only a weak quadratic interaction since, for symmetry reasons, the electronic energy does not depend on 
the sign of the associated deformation of the CNT.

We can thus identify the relevant vibron mode probed in our data. Indeed, of the strongly coupled 
vibrons, only the LSM is in a frequency range compatible with our experimental observations (see Fig. 
2b), as discussed previously6. The relevant dimensionless coupling constant  g for the occurrence of the 
Franck-Condon blockade is given by (the square of) the shift of the equilibrium coordinate measured in 
units of the amplitude (oscillator length) of the vibronic quantum fluctuations. We compute this quantity 
in the framework of the effective Dirac Hamiltonian for the low-energy electronic properties of CNTs, 
combined  with  the  theory  of  elasticity  for  the  description  of  the  vibron  mode  (see  details  in  the 
supplementary material). Using literature values for the elastic constants of graphene20, this calculation 
yields a maximal coupling of
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for the lowest LSM. An important consequence of our analysis is that the coupling constant is strongly 
sample dependent.  It  is  inversely proportional  to  the  CNT circumference  L⊥,  and  proportional  to  the 
electronic  matrix  element  of  the  deformation  potential.  The  matrix  element  vanishes  for  the  lowest 
longitudinal stretching mode when electrons and vibrons are confined to the same region of the CNT. It 
becomes maximal when the electronic wave function is sharply localized around a region of maximum 
strain, yielding the estimate in Eq. (2).

AFM measurements indicate that our CNT typically have a circumference of a few nanometers. 
Thus, our value for g given in Eq. (2) is consistent with the observation of the Franck-Condon blockade 
which requires  g > 1. At the same time, the coupling constants extracted from experiment are slightly 
larger  than  our estimate.  Other  observations  also indicate  that  experiments  exhibit  more  pronounced 
vibronic effects in transport  than theory suggests:  vibrational  sidebands are accompanied by negative 
differential  conductance,  as  already  reported6,  while  theory  predicts  a  step-like  I-V characteristic.  In 
addition, the experiment shows vibrational absorption sidebands within the Coulomb blockade diamonds 
which are absent in theoretical simulations. We have checked that these intriguing enhancements are not 
related  to  asymmetric  coupling  of  the  dot  to  the  leads (see  supplementary  material).  The underlying 
reasons are not understood at present.

Methods

Devices were fabricated from highly doped silicon wafer substrates covered by 200 nm silicon oxide. 
Single-walled carbon nanotubes (SWNTs) were grown randomly on the oxide substrate by CVD based on 
dispersed Ferritin catalysts21. Electron beam lithography was used to pattern metallic electrodes and gate 
structures (2/30 nm Cr/Au) around (selected) individual SWNTs (Fig. 1b). Finally diluted HF (4% for 5 
min) etching followed by critical point drying completes the device fabrication (Fig. 1c). It is crucial that 
the Cr layer oxidises after the etching and drying including exposing to environmental air in order to form 
the top-gate oxide. For a more detailed process description we refer to Refs. 22 and 23. Measurements 
were performed in a variable temperature  4He cryostat at a base temperature of  T = 1.3 K.  We have 
measured the two-terminal conductance through the graphene SET device by applying a symmetric DC 
bias voltage VSD while measuring the current through the SET device with a resolution better than 10 fA. 
For differential conductance measurements a small AC bias, Vac = 48 µV was superimposed on VSD and 
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the differential conductance was measured with lock-in techniques. Measurements have been done in two 
different  devices, with quantum dots formed at  different  locations  along the CNT. All  configurations 
show similar results as the one presented here.
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Figure 1: Characterization of the suspended carbon nanotube quantum dot. a Electron 
microscope micrograph in tilted view of the suspended carbon nanotube (white arrows) with the 
source (S) and drain (D) electrodes and the central top-gate (TG) electrode. b Top view of the 
device. The scale bar in b and c is 200 nm. c Scheme of the quantum dot device formed in the 
suspended carbon nanotube. As shown by the charge stability diagrams (see supplementary 
materials), a quantum dot is formed under the top-gate, separated from the other parts of the 
nanotube through tunnel barriers. Both the suspended top-gate and the underlying back-gate 
(BG) can be used to tune the electronic properties of the quantum dot and the leads. d Source-
drain current through the quantum dot measured as a function of the bias voltage Vsd and the 
top-gate  voltage  Vtg,  adjusting  the  back-gate  voltage  simultaneously  in  order  to  keep  the 
average  chemical  potential  in  the  leads  constant  (see  supplementary  informations): 
Vbg = -0.7576×Vtg + 1.6784 V. Diamond-shape regions of suppressed current are characteristic 
of  Coulomb  blockade  (so-called  Coulomb  diamonds),  while  the  four-fold  periodicity  is 
characteristic of quantum dots formed in clean carbon nanotubes.
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Figure  2:  Evidence  and  temperature  dependence  of  vibron-assisted  transport. a 
Differential  conductance dIsd/dVsd for  a  subset  of  the Coulomb diamonds shown in  Fig.  1d, 
showing  the  quasi-periodic  vibronic  excited  states  (see  dashed lines).  The  arrows point  to 
electronic excited states,  visible at higher energy.  b Energy spacing of  the vibronic excited 
states for the whole gate voltage range shown in Fig. 1d. For each point, the energy spacing is 
averaged over  half  of  a  Coulomb diamond,  corresponding  to  a  given electronic  state.  The 
horizontal dashed line represents the average value over all points, Evib = 0.8 ± 0.2 meV. This 
energy is compatible with the longitudinal stretching mode, for which Evib = ℏvphq, with q = n/
L for the nth vibron mode in the doubly clamped nanotube and L the confinement length. Using 
the value of the stretching phonon group velocity in clean suspended CNT, vst ≈ 2.4104 m/s24, 
we deduce the characteristic length for the first vibron mode L ≈ 65 nm, of the same order of 
magnitude as  the full  suspended parts  of  the nanotube and  in  reasonable  agreement  with 
earlier  experiments6.  c-f Coulomb diamonds measured  in  the  same region  of  gate  voltage 
(same electronic state) for different temperatures, 1.6 K (c), 3 K (d), 5 K (e) and 7 K (f). As the 
temperature  increases,  additional  conductance  peaks  appear  in  the  Coulomb  blockaded 
regions. In  e, the green up triangle and red down triangle mark the positions of conductance 
peaks corresponding to tunneling through the ground state and the first vibronic excited state 
(emission peak), and the blue circle to the position of a conductance peak due to the absorption 
of a vibron (absorption peak).  g Maximum conductance Gmax for tunneling through the ground 
state (green up triangle), the emission peak (red down triangle) and the absorption peak (blue 
circles), corresponding to points marked in panel e. For the tunneling through the ground state 
and the emission peak, we use as a fit Gmax ∝ 1/kBT (see green and red curves), as expected for 
the derivative  of  the Fermi distribution in the quantum Coulomb blockade regime25.  For  the 
absorption peak, we find a good fit with the product of the equilibrium population of the phonon 
states,  given  by  the  Bose  distribution,  1/(exp(ℏ0/kBT)-1), and  the  derivative  of  the  Fermi 
distribution,  giving  Gmax ∝ 1/kBT×1/(exp(ℏ0/kBT)-1)  (see  blue  curve).  From  the  fit  to  the 
experimental data we determine  ℏ0 = 0.96  0.08 meV, which is consistent with the energy 
spacing of  the vibrational  excited states  (Evib. = 0.88  0.15 meV at  this  value of  the gate 
voltage).
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Figure 3: Theory and analysis of Franck-Condon blockade. a,b Schematic description of the 
displacement of the vibron potential for strong (a, g ≫ 1) and weak (b, g ≪ 1) electron-vibron 
coupling g, with no electron (green curve) and one electron (blue curve) in the dot. a The shift 
for g ≫ 1 suppresses the transitions between low lying vibronic states and thus the current in 
the low bias regime (Vsd

1), causing the Franck-Condon blockade. In parallel, it opens transitions 
to excited states in the high bias regime (Vsd

2), yielding vibrational sidebands. In contrast, for 
g ≪ 1 the shift is essentially absent, allowing ground state to ground state vibronic transitions. 
In parallel, the vibronic ground state in the absence of the electron is essentially orthogonal to 
all excited states in the presence of the electron. This suppresses the transition probabilities to 
highly  excited  states  and  the  vibrational  sidebands.  c Zoom  into  a  part  of  the  Coulomb 
diamonds (around  Vtg = 0.1570 V) showing the suppression of the low-bias transport and the 
apparent shift of the Coulomb diamond tip at positive bias with respect to that at negative one, 
and  simulated  Coulomb  diamonds  in  the  same  conditions  as  in  the  experiment  (with 
kBT = 0.15×ℏ0)  for  strongly  asymmetric  tunnel  coupling  between  the  leads  and  the  dot, 
R≫L. The dominant rate limiting processes are sketched for the extremal lines (dashed in the 
figure) of the Coulomb diamond. For the extremal line with negative slope the relevant process 
implies tunneling through the left barrier with no vibronic excitation (i and iv). These processes 
lead  to  a  current  proportional  to  L|M00|2  involving  the  Franck-Condon  overlap  between 
vibronic  ground  states  M00.  Thus  the  Franck-Condon  suppression  of  vibronic  transitions 
manifests itself also at large bias for strongly asymmetric tunneling barriers. The extremal line 
with positive slope involves tunneling through the left lead as well, but as Vsd increases inelastic 
excitation of vibrons can be energetically allowed (ii and iii). These processes are associated 
with vibronic transitions involving M0Q, where Q = Int[eVsd/ℏ0] is the maximum allowed vibronic 
quantum number (as long as M0Q increases for increasing Q). The Franck-Condon mechanism 
does  not  suppress  these  matrix  element  for  large  Q,  resulting  in  an  increasing  differential 
conductance peak at large bias, proportional to L|M0Q|2.  d Differential conductance measured 
for Vtg = 0.0678 V. Representative fits of the maxima with the Franck-Condon progression (see 
text) allows us to extract the parameters  g = 3.5 (negative bias voltage, green squares) and 
g=5.0 (positive bias voltage, red circles). Peaks that deviate strongly from the progression at 
large bias voltage are due to electronic excited states. e Same as in panel d, for  Vtg = 0.1570 V, 
giving  g = 3.0 (negative  bias voltage,  green squares) and  g = 4.5 (positive  bias voltage, red 
circles).


