32 research outputs found
Wear in wind turbine pitch bearings—A comparative design study
We tested two types of ball bearings with an outer diameter of 750 mm to learn more about the challenges of oscillating motions for pitch bearings. The experimental conditions are derived from aero-elastic simulations, long-term wind speed measurements and a scaling method that considers loads and pitch angles. As a result, the parameters relevant for pitch bearings are represented appropriately, and the findings are transferable to other bearing sizes. For the tested parameter sets, severe wear occurred for over 90% of the exposed contact areas after 12 500 oscillating cycles. Decreasing the number of cycles to 1250 leads to a mix of exposed areas with 13% severe wear, 32% mild wear and 55% no wear, with no apparent pattern. The results demonstrate that a comparatively small amount of consecutive cycles can lead to severe wear. A new type of bearing tested showed less wear for the selected operating conditions. © 2021 The Authors. Wind Energy published by John Wiley & Sons Ltd
Oscillating rolling element bearings: A review of tribotesting and analysis approaches
Rolling element bearings, when subjected to small oscillating movements or vibrations, run the risk of being damaged by mechanisms such as Standstill Marks and False Brinelling. Damages resulting from these phenomena can decrease bearing fatigue life and increase wear-induced friction torque. These failures do not correlate well with standard life estimation approaches. Experimental studies play a crucial role in gaining knowledge in this area. The review integrates knowledge from experiments ranging from single contacts to laboratory and full-scale bearings in wind power and aerospace applications. The generalization is achieved using a non-dimensional amplitude parameter that relates rolling element travel during an oscillation to the Hertzian contact size. The review encompasses testing methods, procedures, reporting practices, result scaling, and application-specific considerations
EFFECT: An End-to-End Framework for Evaluating Strategies for Parallel AI Anomaly Detection
Neural networks achieve high accuracy in tasks like image recognition or segmentation. However, their application in safety-critical domains is limited due to their black-box nature and vulnerability to specific types of attacks. To mitigate this, methods detecting out-of-distribution or adversarial attacks in parallel to the network inference were introduced. These methods are hard to compare because they were developed for different use cases, datasets, and networks. To fill this gap, we introduce EFFECT, an end-to-end framework to evaluate and compare new methods for anomaly detection, without the need for retraining and by using traces of intermediate inference results. The presented workflow works with every preexisting neural network architecture and evaluates the considered anomaly detection methods in terms of accuracy and computational complexity. We demonstrate EFFECT\u27s capabilities, by creating new detectors for ShuffleNet and MobileNetV2 for anomaly detection as well as fault origin detection. EFFECT allows us to design an anomaly detector, based on the Mahalanobis distance as well as CNN based detectors. For both use cases, we achieve accuracies of over 85 %, classifying inferences as normal or abnormal, and thus beating existing methods
Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics
Wünsch M, Schröder DC, Fröhr T, et al. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics. Beilstein Journal of Organic Chemistry. 2017;13:2428-2441.The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at C-alpha, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman's chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl) ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Ca of amino acids. Whereas propargylamines with (cyclo) alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the C-alpha-position facilitate a base induced rearrangement to alpha, beta-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics
Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea
The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR) caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1) that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of current strategies for fungicide resistance management
Endurance test strategies for pitch bearings of wind turbines
Modern wind turbines turn their blades along their primary axis to control the conversion of
aerodynamic power. The pitch bearings connect the rotor hub of the turbine with the blades
and allow this rotation. They are large slewing bearings with diameters in the range of 2 - 7 m.
In comparison to bearings in other applications, pitch bearings suffer from three particularities:
Oscillating movements instead of full rotations, dynamic and stochastic loads in five degrees of
freedom instead of controlled loads, and interface parts with low and complex stiffness along the
circumference instead of almost stiff connections.
The capital costs of the bearings and even more the costs connected to failures make it paramount
to mitigate operational risks of new designs. As there are no established calculation methods for
the most dominant damage modes of pitch bearings, bearing tests are of critical value to this risk
mitigation.
This work covers the design of endurance test runs for pitch bearings. A true endurance test run
of pitch bearings should result in a profound evaluation of the risk of failure during the lifetime of
the wind turbine. This goal makes the design of an endurance run a substantial task. It gets even
more challenging when such a test run needs to fit into the overall turbine design process, both in
matters of timing and finance.
This work results in a test run profile that covers wear and fatigue damage modes of the bearing
rollers and raceways, among others. It also covers the development and commissioning of the test
environment for different bearing sizes. The IWT7.5-164 reference turbine serves as example for
the design of the test environment and the test run
Time Series of wear test for roller-type pitch bearings of wind turbines
This data set contains time series and additional information for a test program for pitch bearings of wind turbines. The program covers two distinct operational scenarios: the standstill of the bearing under rated speed and the active pitch cycles caused by the IPC. It is designed for rollerr-type pitch bearings, but can be applied to toher pitch bearings as well. It bases upon the aero-elastic simulation time series (see links).This is a MATLAB structured data set. Whereever possible the data is compiled in the table format to allow easy understanding