46 research outputs found

    Development of the infant foot as a load bearing structure : study protocol for a longitudinal evaluation (the Small Steps study)

    Get PDF
    Background An improved understanding of the structural and functional development of the paediatric foot is fundamental to a strong theoretical framework for health professionals and scientists. An infant’s transition from sitting, through crawling and cruising, to walking is when the structures and function of the foot must adapt to bearing load. The adaptation of skin and other hard and soft tissue, and foot and gait biomechanics, during this time is poorly understood. This is because data characterising the foot tissue and loading pre-walking onset does not exist. Of the existing kinematic and plantar pressure data, few studies have collected data which reflects the real-life activities of infants with modern equipment. Methods This is a longitudinal study and part of the Great Foundations Initiative, a collaborative project between the University of Brighton and the University of Salford, which is seeking to improve foot health in children. Two cohorts of 50 infants will be recruited at the two sites (University of Brighton, Eastbourne, UK and University of Salford, Salford, UK). Infants will be recruited when they first reach for their feet and attend four laboratory visits at milestones related to foot loading, with experienced independent walking being the final milestone. Data collection will include tissue characteristics (skin thickness, texture, elasticity, pH and tendon thickness and cross-sectional area), plantar pressures and kinematics captured during real world locomotion tasks. Discussion This study will provide a database characterising the development of the infant foot as it becomes a weight bearing structure. The data will allow effective comparison and quantification of changes in structure and function due to maturation and loading by measuring pre and post established walking. Additional variables which impact on the development of the foot (gender, ethnicity and body weight) will also be factored into our analysis. This will help us to advance understanding of the determinants of foot development in early childhood

    Modulation of ATP/ADP Concentration at the Endothelial Cell Surface by Flow: Effect of Cell Topography

    Get PDF
    Determining how flow affects the concentration of the adenine nucleotides ATP and ADP at the vascular endothelial cell (EC) surface is essential for understanding flow-induced mobilization of intracellular calcium. Previously, mathematical models were formulated to describe the ATP/ADP concentration at the EC surface; however, all previous models assumed the endothelium to be flat. In the present study we investigate the effect of surface undulations on ATP/ADP concentration at the EC surface. The results demonstrate that under certain geometric and flow conditions, the ATP + ADP concentration at the EC surface is considerably lower for a wavy cell surface than for a flat surface. Because ECs in regions of disturbed arterial flow are expected to have larger undulations than cells in non-disturbed flow zones, our findings suggest that ECs in regions of flow disturbance would exhibit lower ATP + ADP concentrations at their surfaces, which may lead to impaired calcium signaling. If validated experimentally, the present results may contribute to our understanding of endothelial cell dysfunction observed in regions of disturbed flow

    Red Fluorescent Protein-Aequorin Fusions as Improved Bioluminescent Ca2+ Reporters in Single Cells and Mice

    Get PDF
    Bioluminescence recording of Ca2+ signals with the photoprotein aequorin does not require radiative energy input and can be measured with a low background and good temporal resolution. Shifting aequorin emission to longer wavelengths occurs naturally in the jellyfish Aequorea victoria by bioluminescence resonance energy transfer (BRET) to the green fluorescent protein (GFP). This process has been reproduced in the molecular fusions GFP-aequorin and monomeric red fluorescent protein (mRFP)-aequorin, but the latter showed limited transfer efficiency. Fusions with strong red emission would facilitate the simultaneous imaging of Ca2+ in various cell compartments. In addition, they would also serve to monitor Ca2+ in living organisms since red light is able to cross animal tissues with less scattering. In this study, aequorin was fused to orange and various red fluorescent proteins to identify the best acceptor in red emission bands. Tandem-dimer Tomato-aequorin (tdTA) showed the highest BRET efficiency (largest energy transfer critical distance R0) and percentage of counts in the red band of all the fusions studied. In addition, red fluorophore maturation of tdTA within cells was faster than that of other fusions. Light output was sufficient to image ATP-induced Ca2+ oscillations in single HeLa cells expressing tdTA. Ca2+ rises caused by depolarization of mouse neuronal cells in primary culture were also recorded, and changes in fine neuronal projections were spatially resolved. Finally, it was also possible to visualize the Ca2+ activity of HeLa cells injected subcutaneously into mice, and Ca2+ signals after depositing recombinant tdTA in muscle or the peritoneal cavity. Here we report that tdTA is the brightest red bioluminescent Ca2+ sensor reported to date and is, therefore, a promising probe to study Ca2+ dynamics in whole organisms or tissues expressing the transgene

    Facial Skin Coloration Affects Perceived Health of Human Faces

    Get PDF
    Numerous researchers have examined the effects of skin condition, including texture and color, on the perception of health, age, and attractiveness in human faces. They have focused on facial color distribution, homogeneity of pigmentation, or skin quality. We here investigate the role of overall skin color in determining perceptions of health from faces by allowing participants to manipulate the skin portions of color-calibrated Caucasian face photographs along CIELab color axes. To enhance healthy appearance, participants increased skin redness (a*), providing additional support for previous findings that skin blood color enhances the healthy appearance of faces. Participants also increased skin yellowness (b*) and lightness (L*), suggesting a role for high carotenoid and low melanin coloration in the healthy appearance of faces. The color preferences described here resemble the red and yellow color cues to health displayed by many species of nonhuman animals

    You Are What You Eat: Within-Subject Increases in Fruit and Vegetable Consumption Confer Beneficial Skin-Color Changes

    Get PDF
    R Whitehead was funded by an ESRC Studentship.Background: Fruit and vegetable consumption and ingestion of carotenoids have been found to be associated with human skin-color (yellowness) in a recent cross-sectional study. This carotenoid-based coloration contributes beneficially to the appearance of health in humans and is held to be a sexually selected cue of condition in other species. Methodology and Principal Findings: Here we investigate the effects of fruit and vegetable consumption on skin-color longitudinally to determine the magnitude and duration of diet change required to change skin-color perceptibly. Diet and skin-color were recorded at baseline and after three and six weeks, in a group of 35 individuals who were without makeup, self-tanning agents and/or recent intensive UV exposure. Six-week changes in fruit and vegetable consumption were significantly correlated with changes in skin redness and yellowness over this period, and diet-linked skin reflectance changes were significantly associated with the spectral absorption of carotenoids and not melanin. We also used psychophysical methods to investigate the minimum color change required to confer perceptibly healthier and more attractive skin-coloration. Modest dietary changes are required to enhance apparent health (2.91 portions per day) and attractiveness (3.30 portions). Conclusions: Increased fruit and vegetable consumption confers measurable and perceptibly beneficial effects on Caucasian skin appearance within six weeks. This effect could potentially be used as a motivational tool in dietary intervention.Publisher PDFPeer reviewe
    corecore