309 research outputs found

    Agglomeration economies and entrepreneurship: testing for spatial externalities in the Dutch ICT industry

    Get PDF
    Although there is growing evidence on the role of agglomeration economies in the formation and growth of firms, both the concepts of agglomeration economies and entrepreneurship tend to be ambiguously defined and measured in the literature. In this study, we aim to improve the conceptualisations and measures of agglomeration economies and entrepreneurship. Indicators of agglomeration economies are analysed in clearly defined urban regimes on three spatial scales in the Netherlands – national zoning, labour market connectedness, and urban size. This is done in order to uncover their effect on two entrepreneurial phases in the firm life cycle - new firm formation and the growth of incumbent firms in the relatively new ICT industry in the Netherlands. In comparison with new firm formation, the growth of incumbent firms is not so much related to spatial clustering of the ICT industry and other localized sources of knowledge economies associated with urban density. Instead, knowledge as an input for growth of incumbent firms is associated with more endogenous (firm internal) learning aspects, reflected by a significant correlate with R&D-investments. Also the effect of local ICT firm competition differs between the two types of firms: a positive effect on new firm formation, but a negative effect on incumbent firm growth. In general, agglomeration economies have stronger effects on the formation of ICT firms than on the growth of ICT firms.agglomeration economics, spatial externalities, entrepreneurship, location, urban regimes, ICT industry

    Agglomeration Economies and Entrepreneurship in the ICT Industry

    Get PDF
    In this study indicators of agglomeration economies and their effect on entrepreneurship in the ICT industry are analysed in diverse urban contexts. Agglomeration economies have a stronger impact on new firm formation than on the growth of incumbent firms. Concentration and diversity both have a positive effect on new firm formation as well as on the growth of incumbent firms, while competition only has a positive effect on new firm formation. It is especially the effects of industrial diversity that are revealed to be sensitive to urban contexts: positive effects on new firm formation are attached to the connected cities and to the highly urbanized Randstad, and positive effects on firm growth to the intermediate zone, the connected cities and urban municipalities

    Sloshing liquid-metal mass for widening the bandwidth of a vibration energy harvester

    Get PDF
    Linear vibrational energy harvesting devices typically have narrow bandwidths, which limits their practical use, because the resonant frequency needs to match the frequency of the vibration source in order to maximize power generated. This paper presents a method of widening the bandwidth by using a highly dense liquid metal filled mass, which creates a sloshing effect that changes the center of gravity of the cantilever device during motion. The shift in center of gravity causes the resonant frequency of the cantilever to change. Since the resonant frequency of the device is constantly changing during oscillation of the cantilever, this results in a widening of the bandwidth. The displacement of the dense liquid metal has more influence on the center of gravity compared to other less dense liquids thus increasing the bandwidth. The paper demonstrates a 6.5× increase in bandwidth for the liquid metal filled mass compared to a typical air-filled mass with only a 9.6% reduction in power at 1g acceleration. Acceleration effects and mechanical damping were also investigated and presented within the paper

    Broadening the Bandwidth of Piezoelectric Energy Harvesters Using Liquid Filled Mass

    Get PDF
    AbstractA narrow bandwidth is one of the most challenging issues that vibrational energy harvesters have to overcome. This paper demonstrates a novel method of broadening the bandwidth without significantly reducing the peak output voltage. The method uses a liquid filled mass to create a sliding mass effect in order to broaden the bandwidth. The fluid mass increased the full-width-half-maximum (FWHM) value from 1.6Hz to 4.45Hz with no significant decrease in peak-to-peak voltage when compared to an empty mass. The fluid filled mass has a non-linear mass distribution during low frequency, high acceleration applications

    Effect of solder volume on joint shape with variable chip-to-board contact pad ratio

    Get PDF
    The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint

    An electro-responsive hydrogel for intravascular applications: an in vitro and in vivo evaluation

    Get PDF
    There is a growing interest in using hydrogels for biomedical applications, because of more favourable characteristics. Some of these hydrogels can be activated by using particular stimuli, for example electrical fields. These stimuli can change the hydrogel shape in a predefined way. It could make them capable of adaptation to patient-specific anatomy even post-implantation. This is the first paper aiming to describe in vivo studies of an electro-responsive, Pluronic F127 based hydrogel, for intravascular applications. Pluronic methacrylic acid hydrogel (PF127/MANa) was in vitro tested for its haemolytic and cytotoxic effects. Minimal invasive implantation in the carotid artery of sheep was used to evaluate its medium-term biological effects, through biochemical, macroscopic, radiographic, and microscopic evaluation. Indirect and direct testing of the material gave no indication of the haemolytic effects of the material. Determination of fibroblast viability after 24 h of incubation in an extract of the hydrogel showed no cytotoxic effects. Occlusion was obtained within 1 h following in vivo implantation. Evaluation at time of autopsy showed a persistent occlusion with no systemic effects, no signs of embolization and mild effects on the arterial wall. An important proof-of-concept was obtained showing biocompatibility and effectiveness of a pluronic based electro-responsive hydrogel for obtaining an arterial occlusion with limited biological impact. So the selected pluronic-methacrylic acid based hydrogel can be used as an endovascular occlusion device. More importantly it is the first step in further development of electro-active hydrogels for a broad range of intra-vascular applications (e.g. system to prevent endoleakage in aortic aneurysm treatment, intra-vascular drug delivery)

    Enterprise Architecture Analysis with XML

    Get PDF
    This paper shows how XML can be used for static and dynamic analysis of architectures. Our analysis is based on the distinction between symbolic and semantic models of architectures. The core of a symbolic model consists of its signature that specifies symbolically its structural elements and their relationships. A semantic model is defined as a formal interpretation of the symbolic model. This provides a formal approach to the design of architectural description languages and a general mathematical foundation for the use of formal methods in enterprise architectures. For dynamic analysis we define transformations of models of architectures, modeled in XML, and for this purpose the XML vocabulary for an architecture is extended with a few constructs defined in the Rule Markup Language (RML). There are RML tools available that perform the desired transformations. 1. Introductio

    System packaging & integration for a swallowable capsule using a direct access sensor

    Get PDF
    Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option

    DC/DC converter 3D assembly for autonomous sensor nodes

    Get PDF
    This paper reports on the design and the manufacturing of an integrated DCDC converter, which respects the specificity of sensor node network: compactness, high efficiency in acquisition and transmission modes, and compatibility with miniature Lithium batteries. A novel integrated circuit (ASIC) has been designed and manufactured to provide regulated Voltage to the sensor node from miniaturized, thin film Lithium batteries. Then, a 3D integration technique has been used to integrate this ASIC in a 3 layers stack with high efficiency passives components, mixing the wafer level technologies from two different research institutions. Electrical results have demonstrated the feasibility of this integrated system and experiments have shown significant improvements in the case of oscillations in regulated voltage. However, stability of this output voltage toward the input voltage has still to be improved

    A cardiovascular occlusion method based on the use of a smart hydrogel

    Get PDF
    Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels
    • 

    corecore