
Enterprise Architecture Analysis with XML

F.S. de Boer1,2 M.M. Bonsangue2∗† J. Jacob1 A. Stam2,3 L.van der Torre1,4

1CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2LIACS, Leiden University, The Netherlands

3Ordina SI&D Technology Consulting, Amersfoort, The Netherlands
4Delft University of Technology, The Netherlands

Abstract

This paper shows how XML can be used for static and
dynamic analysis of architectures. Our analysis is based
on the distinction between symbolic and semantic models of
architectures. The core of a symbolic model consists of its
signature that specifies symbolically its structural elements
and their relationships. A semantic model is defined as a
formal interpretation of the symbolic model. This provides
a formal approach to the design of architectural descrip-
tion languages and a general mathematical foundation for
the use of formal methods in enterprise architectures. For
dynamic analysis we define transformations of models of ar-
chitectures, modeled in XML, and for this purpose the XML
vocabulary for an architecture is extended with a few con-
structs defined in the Rule Markup Language (RML). There
are RML tools available that perform the desired transfor-
mations.

1. Introduction

Architectures as defined in the IEEE 1471-2000 stan-
dard [8] typically consists of conceptual models visualized
as diagrams. Architectural description languages and UML
have been used for information architectures, and more re-
cently similar languages are used for modeling enterprise
architectures, as described, for example, in the Zachman’s
framework [16].

The research question of this paper is how to design tools
for analysis of enterprise architectures. We distinguish be-
tween static and dynamic analysis, and we use XML-based
technology. Our approach is based on the following logical
concepts [2].

∗The research of Dr. Bonsangue has been made possible by a fellow-
ship of the Royal Netherlands Academy of Arts and Sciences

†Corresponding author. Phone: +31.71.527 7095 Fax:
+31.71.527 6985 Email: marcello@liacs.nl

Signature for static analysis. The signature of an archi-
tecture focuses on the symbolic representation of the
structural elements of an architecture and their rela-
tionships, abstracting from other architectural aspects
like rationale, pragmatics and visualization. It empha-
sizes a separation of concerns which allows to master
the complexity of the architecture. Notably, the signa-
ture of an architecture can easily be expressed in XML
for storage and communication purposes, and can be
integrated as an independent module with other tools
including, e.g., graphics for visualization.

Semantic model for dynamic analysis. The formal se-
mantics of a symbolic model of an architecture pro-
vides a formal basis for the development and applica-
tion of tools for the logical analysis of the dynamics
of an architecture. A signature of an architecture ba-
sically only specifies the basic concepts by means of
which the architecture is described, but an interpreta-
tion contains much more detail. In general, there can
be a large number of different interpretations for a sig-
nature. This reflects the intuition that there are many
possible architectures that fit a specific architectural
description.

By applying the techniques for static and dynamic anal-
ysis discussed in this paper, we get a better understanding
of how enterprise architectures are to be interpreted and
what we mean with the individual concepts and relation-
ships. In other words, these techniques allow enterprise ar-
chitects to validate the correctness of their architectures, to
reduce the possibility of misinterpretations and even to en-
rich their architectural descriptions with relevant informa-
tion in a smooth and controllable way.

The layout of this paper is as follows. In Section 2 we
introduce a running example to explain our definitions. In
Section 3 we discuss tool support, XML, AML and RML.
In Section 4 and 5 we explain static and dynamic analysis
using these tools.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ArchiMate: a running example

To illustrate static and dynamic analysis in enterprise
architectures, we use an example from the ArchiMate
project. ArchiMate is an enterprise architecture modelling
language [11, 12]. It provides through a metamodel con-
cepts for architectural design at a very general level, cover-
ing for example the business, the application, and the tech-
nology architecture of a system. The Archimate language
resemble the business language Testbed [5] but it has also a
UML-flavor, introducing concepts like interfaces, services,
roles and collaborations.

The example modelled using the ArchiMate language
concerns the enterprise architecture of a small company,
called ArchiSell. In ArchiSell, employees sell products to
customers. The products are delivered to ArchiSell by var-
ious suppliers. Employees of ArchiSell are responsible for
ordering products and for selling them. Once products are
delivered to ArchiSell, each product is assigned an owner,
responsible for selling the product.

To describe this enterprise we use the ArchiMate con-
cepts and their relationships as presented in Figure 1. In par-
ticular, we use structural concepts (product, role and object)
and structural relationships (association), but also a behav-
ioral concepts (process) and behavioral relationships (trig-
gering). Behavioral and structural concepts are connected
by means of the assignment and access relationships.

process

role

object

triggering

assignment

access

product

association

Figure 1. Some concepts and relations

A product is a physical entity that can be associated with
roles. A role is the representation of a collection of respon-
sibility that may be fulfilled by some entity capable of per-
forming behavior. The assignment relation links processes
with the roles that perform them. The triggering relation
between process describes the temporal relations between
them. When executed, a process may need to access data,
whose representation is here called object.

We specifically look at the business process architecture
for ordering products, depicted in Figure 2.

In order to fulfill the business process for ordering a
product, the employee has to perform the following activ-
ities:

• Before placing an order, an employee must register the
order within the Order Registry.

• After that, the employee places the order with the sup-
plier.

• As soon as the supplier delivers the product(s), the em-
ployee first checks if there is an order that refers to this
delivery. Then, he/she accepts the product(s).

• Next, the employee registers the acceptance of the
product(s) within the Product Registry and determines
which employee will be the owner of the product(s).

Employee

Accept product

Register

product

acceptance

Place order for
product

Register order
placement

Order

Registry

Product

Registry

owns

Product

Figure 2. A Business Process Architecture

Despite the apparent simplicity of the diagram, there are
several issues which can be analyzed. For example, when
an architect presents this architecture, he may explain that
the role of the order registry is to coordinate between the
first two processes of placing orders and accepting them.
Whereas the same employee should see that an order which
is placed is also registered, there may be another employee
which accepts the order.

Also variants can be analyzed. For example, given the
fact that the coordination between order placement and or-
der acceptance is regulated via the order registry, is it still
necessary that placing the order for a product triggers the
process that accepts the product. In other words, what is
the impact if we change the architecture by removing this
relation?

Before we can consider these questions, we need a lan-
guage to represent the architecture. The ArchiMate lan-
guage is a visual modelling language not well suited for
representation or reasoning. We therefore represent archi-
tectures like the one above in XML.

2



3. The tools: XML, AML and RML

Before we start to analyze the enterprise architecture of
the running example, we introduce our machinery. It con-
sists of XML, AML and, most importantly, RML.

The Extensible Markup Language (XML) [15] is a uni-
versal format for documents containing structured informa-
tion using nested begin and end labels, which can contain
attributes. For example, a such as:

<product>
<weefer color="green">zyx</weefer>
<wafer color="blue">cis</wafer>
<weefer color="green">zyx</weefer>
</product>

The nested structure of the labels corresponds to a tree.
They can be used over the Internet for web site content and
several kinds of web services. It allows developers to easily
describe and deliver rich, structured data from any appli-
cation in a standard, consistent way. Today, XML can be
considered as a lingua franca in computer industry, increas-
ing interoperability and extensibility of several applications.
Terseness and human-understandability of XML documents
is of minimal importance, since XML documents are mostly
created by applications for importing or exporting data.

The ASCII Markup Language (AML) [9] used to show
examples in this paper is an alternative for XML syntax.
AML is designed to be concise and elegant and easy to use.
AML uses indentation to increase readability and to define
the XML tree hierarchy: indentation level corresponds to
depth, sometimes called level, in the tree. No indentation
is required for the set of attributes that immediately follows
each attribute name.

product
weefer color="green"
zyx

wafer color="blue"
cis

weefer color="green"
zyx

The Rule Markup Language (RML) is a tool for trans-
forming XML documents that can be used for analysis of
architectural description, and in particular for the definition
and simulation of the system behavior. It consists of a set
of XML constructs that can be added to an existing XML
vocabulary in order to define RML rules for that XML vo-
cabulary. These rules can then be executed by RML tools
to transform the input XML according to the rule definition.
Consider for example the following rule which removes du-
plicates from an XML document.

div class=rule name="Removeduplicates"
div class=antecedent

product
rml-list name=rml-A

rml-tree name=rml-B
rml-list name=rml-C
rml-tree name=rml-B
rml-list name=rml-D

div class=consequence
product

rml-use name=rml-A
rml-use name=rml-B
rml-use name=rml-C
rml-use name=rml-D

The example illustrates the main constructs. First, there
is an input and an output part of the rule, called antecedent
and consequent. The antecedent contains a set of variables,
rml-A, rml-B, rml-C and rml-D. The second variable occurs
twice, and will therefore only match with a duplicate. Fi-
nally, rml-list matches with a list of elements, and rml-tree
with one element; they can be considered the analogues of
* and ? in regular expressions as used in for example grep.

The antecedent matches with the product given above,
and binds the variables so that rml-A and rml-E are empty,
rml-B is the weefer and rml-C is the woofer. The conse-
quent of the rule explains the output of the rule. It repro-
duces the content of the variables rml-A, rml-B, rml-C and
rml-D, but it does not reproduce the second instance of rml-
B. In this way, the duplicate is removed.

product
weefer color="green"
zyx

wafer color="blue"
cis

There are a few more constructs, dealing for example
with variables for attributes such as color. The set of RML
constructs is concise and shown in Table 3. Things that
can be stored in RML variables are element names, attribute
names, attribute values, whole elements (including the chil-
dren), and lists of elements.

The example illustrates that a pattern can be matched that
is distributed over various parts of the input XML. Such
pattern matching is hard to define with other existing ap-
proaches to XML transformation because they do not use of
the problem domain XML for defining transformation rules:
transformations are defined either in special purpose lan-
guage like the Extensible Stylesheet Language Transforma-
tion (XSLT), or they are defined at a lower level by means
of programming languages like DOM and SAX. RML cap-
tures transformations defined by a single rule, but interac-
tion among rules is dealt with by other tools. Moreover,
XML transformations normally involve creating links be-
tween elements by means of cross-referencing attributes, or
reordering elements, or adding or removing elements, but
does typically not include things like integer arithmetic and
floating point calculations. In case of such transformations
RML tools will have to be combined with other tools that
can do the desired calculation.

3



Elements that designate rules

div class="rule"
div class="antecedent" context="yes"
div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element (and children) at this position to RML variable X.
rml-list name="X" * Bind a sequence of elements (and their children) to X.
rml-use name="X" * Output the contents of RML variable X at this position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next one with rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs somewhere in the current
sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the younger sibling of this element is the last in the current sequence.

A * in the A column means the construct can appear in a rule antecedent. A * in the C column is for the consequence.

Figure 3. All the RML constructs

Combinations of RML with other components like pro-
gramming language interpreters has been applied success-
fully in the EU project OMEGA (IST-2001-33522, URL:
http://www-omega.imag.fr) that deals with the formal ver-
ification of UML models for software. That tool for the
simulation of UML models does the XML transformations
with RML, and uses an external interpreter for example for
floating point calculations on attributes in the XML encod-
ing.

In the remainder of this paper, we show how RML can
be used for the analysis of the enterprise architecture in the
running example. RML was designed to make the definition
of executable XML transformations also possible for other
stakeholders than programmers. This is of particular rele-
vance when transformations capture for instance business
rules. In this way it is possible to extend the original model
in the problem domain XML vocabulary with semantics for
that language. Similarly, it is also possible to define rules
for constraining the models with RML.

Below we show an example of RML by presenting the
rule that defines the state transformation of the action of our
running example, where emp and order-reg are individual
names for an employee and the Order registry, respectively.

The details of this notation are discussed later in this paper.

emp, order-reg := Register_order_placement(
emp, order-reg)

Content-preserving RML constructs have been omitted
for clarity.

div class=rule name="Register order placement"
div class=antecedent

variables
rml-Employee order=rml-OrderName

product=rml-ProductName
order-registry

rml-list name=oldOrders
div class=consequence

variables
rml-Employee order=rml-OrderName

product=rml-ProductName
order-registry

rml-use name=oldOrders
order name=rml-OrderName

This example illustrates several RML constructs which
do not appear in the removal of duplicates example. In par-
ticular, it uses variables for element names and attribute val-
ues. The effect of applying this rule is that order-registry is
extended with an order.

4



4. Static analysis

We designed our own XML vocabulary, because we
could not find an adequate standard one. We base this de-
sign on a formal basis discussed in Sect. 4.1. Diagrams
like the one in Fig. 2 can be viewed in an abstract way as
consisting of nodes and arrows, where some of the arrows
are bidirectional. In the architectural community the nodes
are called concepts and the arrows are called relations. De-
pending on the topic of the diagram, in some cases there is
an existing standardized XML vocabulary that can be used
to provide an XML encoding of the diagram. For instance
there is XMI to enable XML-based interchange of meta-
data between UML modeling tools. What is typically lost
in such XML Metadata Interchange format are some of the
visual elements: the positions of the boxes in the picture
and the lengths of the lines for the arrows. An XML encod-
ing only captures the names of the nodes and the arrows and
what nodes are connected via which arrows. There can also
be information in the XML encoding about attributes of the
nodes and arrows, information that is not visible in the dia-
gram but in the accompanying text in English. An example
of such extra information is that a department consists of a
maximum of 100 employees.

4.1. A formal basis for static analysis

The core of a symbolic model of an architecture consists
of its signature which specifies its name space. The names
of a signature are used to denote symbolically the structural
elements of the architecture, their relationships, and their
dynamics. The nature of each structural element is speci-
fied by a sort (a data type identifier), and each architectural
relationship by a relation between sorts. Additionally, a sig-
nature includes an ordering on its sorts and its relations for
the specification of a classification in terms of a generaliza-
tion relation on the structural elements and the architectural
relations. For example, the sort object in Figure 1 can be
defined as a generalization of both the sorts Order Registry
and Product Registry given in Figure 2, to indicate that ev-
ery element in Order Registry or Product Registry is also
an element of sort object. Also, an association between role
and product is a generalization of the relation owns between
Employee and Product.

The ordering on sorts and relations is in general used to
capture certain aspects of the ontology of an architecture.
Other ontological aspects can be captured by the aggrega-
tion and containment relations. For technical convenience
however we restrict to the generalization relation only.

Definition 1 A signature consists of

• a partially ordered set of primitive sorts, also called
the sort hierarchy;

• a partially ordered set of relations, where each rela-
tion is of the form R(S1, . . . , Sn), with R the name of
the n-ary relation and Si the primitive sort of its ith
argument.

We allow overloading of relation names, i.e., the
same name can be used for different relations. For in-
stance, given the primitive sorts Person, Boss, and
Employee, the relations Responsible(Boss,Employee)
and Responsible(Person, Person) are in general two dif-
ferent relations with the same name.

Further information about the architecture is expressed
symbolically in terms of suitable extensions of one of its
signatures. Usually a signature is extended with operations
for constructing complex types from the primitive sorts. Ex-
amples are the standard type operations like product type
T1 × T2 of the types T1 and T2, and the function type
T1 → T2 of all functions which require an argument of
type T1 and provide a result of type T2. Note that a relation
R(S1, . . . , Sn) is a sub-type of S1 × · · · × Sn.

Given functional types, the name space of a signature
can be extended with functions F (T1) : T2, where F spec-
ifies the name of a function of type T1 → T2. Func-
tions can be used to specify the attributes of a sort. For
example, given the primitive sorts Employee and N, the
function Age(Employee) : N is intended for specifying
the age of each person. Note that multi-valued functions
F (T1, . . . , Tn) : T ′

1, . . . , T
′
m can be specified by the func-

tional type T → T ′, where T denotes the product type
T1×· · ·×Tn and T ′ denotes the product type T1×· · ·×Tn.
In general, functions are also used to specify symbolically
the dynamics of an architecture.

The next example shows the signature of the business
process architecture described in Figure 2.

Example 1 The sorts of the example described in Figure 2
and 1 are simply enumerated by

role
object
product
Employee
Product
Order_Registry
Product_Registry

Note that we did not include processes as a sort. The
subsort relation is specified in AML by the following enu-
meration

is-a
domain name=Employee
codomain name=Role

is-a
domain name=Order_Registry
codomain name=Object

is-a

5



domain name=Product_Registry
codomain name=Object

is-a
domain name=owns
codomain name=assignment

Note that we have encoded meta-model information of
an architecture as part of the signature of the architecture
itself. The relation between the meta-model sorts and rela-
tions and architectural sorts and relations is expressed by
the respective partial orders between sorts and relations of
the signature.

In AML the owns-relation itself is specified by

owns
domain name=Employee
codomain name=Product

Finally, the processes are specified in AML as functions.
The types of the arguments and result values are determined
as follows: A role which is assigned to a process specifies
the type of both an argument and a result value of the cor-
responding function. Similarly, an outgoing access relation
from a process to an object specifies the type of both an ar-
gument and a result value of the corresponding function.
On the other hand, an incoming access relation from an ob-
ject to a process only specifies the type of the corresponding
argument (this captures the property of ‘read-only’).

Register_order_placement
domain name=Employee
domain name=Order_Registry
codomain name=Employee
codomain name=Order_Registry

Place_order_for_product
domain name=Employee
codomain name=Employee

Accept_product
domain name=Employee
domain name=Order_Registry
codomain name=Employee

Register_product_acceptance
domain name=Employee
domain name=Product_Registry
codomain name=Employee
codomain name=Product_Registry

Note that the triggering relation is not included in our
concept of a signature. In our view such a relation specifies
a temporal ordering between the processes which is part of
the business process language discussed below in section 5.

Interpretation of types We first define a formal interpre-
tation of the types underlying a symbolic model.

Definition 2 An interpretation I of the types of a signature
assigns to each primitive sort S a set I(S) of individuals
of sort S which respects the subsort ordering: if S1 is a
subsort of S2 then I(S1) is a subset of I(S2).

Any primitive sort is interpreted by a subset of a uni-
verse which is given by the union of the interpretation of
all primitive sorts. The hierarchy between primitive sorts is
expressed by the subset relation.

An interpretation I of the primitive sorts of a signature of
an architecture can be inductively extended to an interpreta-
tion of more complex types. For example, an interpretation
of the product type T1×T2 is given by the Cartesian product
I(T1) × I(T2) of the sets I(T1) and I(T2). The interpreta-
tion of the function type T1 → T2 as the set I(T1) → I(T2)
of all functions from I(T )1) to I(T2), however, does not
take into account the contra-variant nature of the function
space. For example, since the sort N of natural numbers is
a sub-sort of the real numbers R, a function from R to R

dividing a real number by 2 is also a function from N to R,
but, clearly, the set of all functions from I(R) to I(R) is not
a subset of the set of functions from I(N) to I(R).

Therefore, given the universe U defined as the union of
all the interpretations of the primitive sorts, we define the
interpretation of the function type T1 → T2 by

I(T1 → T2) = {f ∈ U → U | f(I(T1)) ⊆ I(T2)}.

The function type T1 → T2 thus denotes the set of all
functions from the universe to itself such that the image of
I(T1) is contained in I(T2). Note that if T ′

1 is a subtype of
T1 and T2 is a subtype of T ′

2 then I(T1 → T2) is indeed a
subset of I(T ′

1 → T ′
2).

In general, there can be a large number of different in-
terpretations for a signature. This reflects the intuition that
there are many possible architectures that fit a specific ar-
chitectural description. In fact, a signature of an architec-
ture basically only specifies the basic concepts by means of
which the architecture is described.

Semantic models The semantic model of a system in-
volves its concrete components and their concrete relation-
ships which may change in time because of the dynamic
behavior of a system. To refer to the concrete situation of
a system we have to extend its signature with names for re-
ferring to the individuals of the types and relations. For a
symbolic model, we denote by n : T a name n which ranges
over individuals of type T .

Given a symbolic model of an architecture extended with
individual names and an interpretation I of its types, we
define a semantic model Σ as a function which provides the
following interpretation of the name space of the symbolic
model covering its relations, functions, and individuals.

Relations For each relation R(S1, . . . , Sn) we have a rela-
tion

Σ(R) ⊆ I(S1 × · · · × Sn)

6



respecting the ordering between relations, meaning
that if R1 is a sub-relation of R2 then Σ(R1) is a subset
of Σ(R2).

Functions For each symbolic function F (T1) : T2 we have
a function

Σ(F ) ∈ I(T1 → T2).

Variables For each individual name n : S we have an ele-
ment

Σ(n) ∈ I(S).

4.2. XML for static analysis

In this section we describe the methodology we follow
to design an XML vocabulary for diagrams like in Fig. 2
and 1. In general we will model every node in the diagram
with an XML element. Figure 1 is a legenda, a collection
of unconnected concepts and relation names with their vi-
sual representation. Only the concepts are given XML ele-
ments, not the relation names. For the concepts (rectangles
and rounded rectangles) in Fig. 1 and 1 we design XML
elements with that name. The lines in Fig. 2, and other
relations that are mentioned in the accompanying text, will
be modeled with XML elements with the name of the rela-
tion, and these elements will have domain and codomain
children that contain cross-references to the elements that
participate in the relation. This way it is possible to de-
fine n to m relations by taking n domain elements and
m codomain elements. A designer could choose to take
other names for domain and codomain, like from and
to, but the methodology remains the same.

Section 4.1 shows examples for the various XML
elements in the model. The complete XML model
for static analysis for the example consists of a
businessprocess element with as children elements
the examples in Sect. 4.1.

All the concepts and relations from Fig. 2 and 1 and the
explanatory text have been put into XML. The disadvan-
tage of storing meta-information in an XML encoding, like
in this case with is-a relations, is that the encoding risks
to become too big and chaotic. The chaos can be improved
upon with extra elements, for instance by putting the meta
concepts (process, role, object and product) in a
containing element called meta, but this still does not solve
the size problem. If analysis is not using the meta informa-
tion, then it can be omitted, or stored in an external file for
future reference. In the above model this method would re-
move all the is-a relations and the four meta elements.

Our XML encoding does not make much use of the pos-
sibilities to use hierarchy between elements in XML itself.
An example of using more XML hierarchy would be:

businessprocess

role
Employee

object
Order_Registry
Product_Registry

product
Product

process
Register_order_placement

domain name=Employee
domain name=Order_Registry
codomain name=Employee
codomain name=Order_Registry

Place_order_for_product
domain name=Employee
codomain name=Employee

Accept_product
domain name=Employee
domain name=Order_Registry
codomain name=Employee

Register_product_acceptance
domain name=Employee
domain name=Product_Registry
codomain name=Employee
codomain name=Product_Registry

owns
domain name=Employee
codomain name=Product

which is a more efficient encoding for the example, but our
experience shows that it is generally a good idea to be cau-
tious when using XML hierarchy. With this last encoding
it will be more difficult for example to put the meta infor-
mation in a separate file. And there are several kinds of
relations in a model, like generalization, composition and
association, that can be expressed with hierarchy in XML,
but once we have chosen to use hierarchy in XML for gen-
eralization it will not readily be possible to use XML hier-
archy also for composition relations when we want to add
those later. In the case of modeling generalization there is
also the problem of modeling what is known as “multiple-
inheritance” in computer science: it is not generally possi-
ble to model a generalization of two concepts with XML hi-
erarchy alone because an XML element only has one parent
element. If generalization is very important and interest-
ing for the analysis you have in mind then modeling it with
XML hierarchy could possibly work out very well, but in
our methodology we start out using as little XML hierarchy
as possible.

XML individuals for semantic models So far we have
only put sorts and relations into XML, but not individuals
of sorts, necessary for semantic models. Putting the individ-
uals into XML can be useful for several types of analysis,
especially for analysing dynamics. In our methodology we
can model individuals of a sort as XML children of the sort
element, with all attributes that are needed as can be inferred
from the text description of an architecture. The name of
the children element is free to choose, but there could be a

7



naming convention such that it is clear what sort an individ-
ual belongs to. For example, adding two individuals of sort
Employee can be modeled with:

businessprocess
...
Employee

e1 order=Product product=p1
e2 order=Product product=p2

...

where the e1 and e2 elements are Employee individuals
and their order and product attributes have been added
because the textual description of the architecture said that
an employee has an order in mind and that an employee is
handling a product. There is only one Product sort in our
example, so the order attribute looks redundant, but we
may want to add more products later.

Another approach is to put all the XML elements for sort
individuals inside a variables element, and in that case
it would be a good idea to give the individuals an attribute
that designates their sort, like in

businessprocess
...
Employee
...
variables

e1 sort=Employee order=Product product=p1
e2 sort=Employee order=Product product=p2
...

where we see the use of an extra sort attribute. Of course
another name than variables is possible. And of course
their are many different approaches altogether, but with the
two described here we have good experiences.

Examples of static analysis An example of static analy-
sis is to analyse whether all name attributes of domain and
codomain elements in the functions are defined as XML el-
ement names, and to do type checking if that is considered
useful. Another example is to check if all the is-a re-
lations are anti-symmetric. Yet another example is impact
analysis.

To perform the static analysis there are many tools in the
industry that can be used that are capable of parsing XML.
These tools can be used to turn the XML in a graphical rep-
resentation, or they can do things like counting the number
of employees or adding their salary attributes. The RML
tools can also be used. The RML tools are designed for
transformations of XML to XML so they are more targeted
at dynamic analysis, but it is very well possible to define
transformations of XML that rearrange the input: for exam-
ple displaying a list of employee elements. Due to a lack
of space we can not already show examples of such RML
transformations here, we refer to Sect. 5.2 for RML exam-
ples.

5. Dynamic analysis

5.1. A formal basis for dynamic analysis

We can model the dynamic behavior of a model of an
architecture with a state-machine [3]. The transitions in the
state-machine correspond with RML rules or recipes.

State machine semantics The sort individuals are coor-
dinated by means of state machines. These state machines
consist of transitions of the form

l
[g]/a−→ l′

where l is the entry location and l′ is the exit location of the
transition. Furthermore, g denotes its boolean guard and a
its action.

The boolean guard of a transition is a boolean expres-
sion that consists of the usual integer values and string val-
ues but also of RML-variables from the rule or recipe that
is captured by the transition. For evaluating the guard these
RML-variables will be assigned a value by the RML match-
ing algorithm with the XML encoding of the model as input.

An action involves a call to the RML tools executing an
RML rule or recipe on the model. For the action in the
transition we generally use the name of the file the rule or
recipe is stored in.

In the following we use class for sort and we use object
for individual, because these names are more usual when
describing state-machines, e.g. in UML.

In order to formally define the operational semantics of
state machines in architectures we assume for each class c
of a given architecture a set Oc of references to objects in
class c. In XML such references can be modeled by means
of id attributes with unique values, and cross-reference at-
tributes. In case class c extends c′ (according to the archi-
tecture) we have that Oc is a subset of Oc′ . (For classes
which are not related by the inheritance hierarchy these sets
are assumed to be disjoint.)

Definition 3 An object diagram of a given architecture with
classes c1, . . . , cn can be specified mathematically by func-
tions σc, for c ∈ {c1, . . . , cn}, which specify for each object
in class c existing in the object diagram the values of its at-
tributes, i.e., σc(o.A) denotes the value of attribute A of the
object o, i.e., it denotes an object reference in Oc′ , where c′

is the (static) type of the attribute A (defined in the class c
in the architecture).

Often we omit the information about the class and write
simply σ(o.A). Control information of each object o in an
object-diagram is given by σ(o.L), assuming for each class
an attribute L which is used to refer to the current location
of the state machine of o.

8



Given an architecture consisting of a finite set of classes
c1, . . . , cn and a state machine, we define its behavior in
terms of a transition relation on the object diagram.

This transition relation is defined parametric in the se-
mantics of the application operations.

More specifically, we assume for each action a involving
an RML rule or recipe a labeled transition relation σ

a−→ σ′

which specifies σ′ as a possible result of the execution of the
call a on σ.

Such a labeled transition describes the observable effect
on the architecture of the execution of the corresponding
call by the RML tools. As a special case we assume for
each guard g a labeled transition relation σ

g−→ b
where b denotes a boolean value which indicates the re-

sult of the evaluation.

Definition 4 Formally, given an architecture and the se-
mantic interpretations of the RML rules and recipes, we
have a transition σ → σ′ from the object-diagram σ to the
object-diagram σ′ if the following holds: there exists an ob-
ject o and a transition

l
[g]/a−→ l′

in its state machine such that

Location σ(o.L) = l and σ′(o.L) = l′;

Guard σ
g−→ true;

Action in case of a call a involving an RML rule or recipe
we have

σ
a−→ σ′.

The first clause above describes the flow of control. The
second clause states that the guard evaluates to true (without
side-effects). A call to an RML rule or recipe is described
in terms of a corresponding labeled transition which mod-
els the execution of the call by the underlying RML tools.
Note that the execution of a transition of a state-machine
is atomic. However, more fine-grained modes of execution
can be introduced in a straightforward manner.

5.2. XML+RML for dynamic analysis

In our methodology we start with writing out scenarios.
Scenarios consist of sequences of semantic models, called
scenes, connected by functions, called transitions. We use
the words scene and transition or transformation when dis-
cussing XML encodings. An example is an employee who
registers an order in the order registry: the source-scene of
the transition contains an employee with an order and an
order registry, the target-scene contains the employee and
the order registry with the order added. When we have col-
lected enough examples of transitions, we define the RML

rules that define the XML transformations from scene to
scene. We could also try to define the RML rules with-
out collecting scenes first, but using scenes has proven to be
useful in practice and the scenes also provide a testbed to try
the rules on, and later versions of rules. From source- and
target-scene to an RML rule often does not involve much
more than replacing literal strings with RML variables. The
resulting set of RML rules can be used as actions in state-
machines to define the behavior of an architecture. If a par-
ticular transition is too complex for 1 rule then a sequence of
possibly iterating rules can be collected in an RML recipe,
and the recipe can then be used as the action in the transition
of a state-machine.

We now demonstrate our methodology applied to the
”Register order placement” process in the running example.

The XML contain a businessprocess element as
shown before containing the sorts and relations from the
symbolic model and a variables element where we
keep the sort individuals. To save space we only show the
variables section from now on.

A first scene consists of an employee and an order reg-
istry:

variables
e1 sort=Employee order=Product
order-registry

Product
Product

The XML element with the name e1 corresponds to an
emp:Employee variable in Sect. 5.1 and the XML element
with the name order-registry, with its children, cor-
responds to a or:Order Registry variable. These variables
are parameters of a function Register order placement like
in Sect. 5.1.

From this scene, the register order placement process
leads to another scene:

variables
e1 sort=Employee order=None
order-registry

Product
Product
Product

where the order attribute Employee is now None and the
order for a Product has been added to the registry.

To produce a simplistic RML rule based on only these
two scenes, we define

div class=rule name="Register order placement"
div class=antecedent

variables
e1 sort=Employee order=Product
order-registry

Product
Product

9



div class=consequence
variables

e1 sort=Employee order=None
order-registry

Product
Product
Product

as the first version of the RML rule we want to develop
for the process. To create this rule we simple copied the
first scene in the antecedent of the rule, and we copied the
second scene in the consequence.

This RML rule works, but only for employee elements
with the name e1, and only for products of type Product
as value of the order attribute of the employee. There could
be other products e.g. Product2 in the symbolic model
and such products as value of the order attribute will not
work. And the rule would only work when there are exactly
2 Products already in the registry where we want the rule to
work with any number in the registry already. We can see
these other possibilities by looking at other possible source
scenarios we collected around this process.

variables
e1 sort=Employee order=Product
e2 sort=Employee order=Product2
order-registry

Product
Product

variables
e2 sort=Employee order=Product2
order-registry

Product

To make the rule work also on these other scenarios, we
change the relevant literal strings in the rule into RML vari-
ables, according to table 3, leading to the second version of
the rule:

div class=rule name="Register order placement"
div class=antecedent

variables
rml-Employee sort=Employee

order=rml-P
order-registry

rml-list name=OldOrders
div class=consequence

variables
rml-Employee sort=Employee

order=rml-P
order-registry

rml-use name=OldOrders
Product

This rule is much better, but still not finished. This rule
only works if there is exactly 1 employee sort individual de-
fined and exactly 1 order-registry. But there could be other

things defined in the variables section around the employee
elements (we assume that an order-registry is always last in
the variables section). If there are, the rule will not work
since the first element does not match the pattern for an em-
ployee element as defined, or the second element is not an
order-registry element. To copy such other elements in the
variables section we change the rule,

div class=rule name="Register order placement"
div class=antecedent

variables
rml-list name=Pre
rml-Employee sort=Employee

order=rml-P
rml-list name=Post
order-registry

rml-list name=OldOrders
div class=consequence

variables
rml-use name=Pre
rml-Employee sort=Employee

order=rml-P
rml-use name=Post
order-registry

rml-use name=OldOrders
Product

putting everything before the employee we want to
match in RML variable Pre and putting everything after it,
except the last element that must be order-registry,
in Post.

A final addition to the rule is needed because an em-
ployee pattern in the rule now has a sort and a order
attribute, but could very well have other attributes we want
to keep in the output. This is done by adding an at-
tribute rml-others=Others to the rml-Employee
elements in the antecedent and in the consequence.

Now that we have defined this rule, we can define the first
transition of the state-machine for this business process. To
do this in XML we add a statemachine element to the
businessprocess element, and with this first transition
it looks like:

statemachine
transition id=t1

source state=start
target state=state_1
action

implementation
"""Register order placement"""

When we have modeled the whole running example,
there will be 4 transitions in the state machine, for the
4 processes in Fig. 1. A transition does not have to consist
of an action alone, there can also be a guard with an guard-
expression containing the usual things like string values and
integers, but also RML variable names from the RML rule
in the action. The guard-expression can be for example a

10



Java expression that can be evaluated by a Java interpreter,
or it can be an OCL expression, or anything else suitable.
The purpose of such a guard-expression is to constrain the
applicability of the RML rule. For example to add the con-
straint that only orders of sort Product2 or Product3
may be added, a guard is added to the t1 transition, result-
ing in:

state machine
transition id=t1

source state=start
target state=state_1
guard

implementation
"""P == ’Product2’ or P == ’Product3’"""

action
implementation

"""Register order placement"""

6. Summary and outlook

The techniques proposed in this paper enforce architects
to think about the relation between their architectures and
the real world. Static analysis techniques allow them to
think about structural issues, like cardinality and “is-a” re-
lationships. With dynamic analysis techniques, they can
make small simulations the processes or other behavioural
descriptions they propose. All these techniques improve the
understanding of their own creations.

In this paper we have introduced a XML tool for static
and dynamic analysis of enterprise architectures. We have
shown how it transforms XML data and how it can be used
to simulate business processes. A summary of the method-
ology we follow:

1. Create a symbolic model, see Sect. 4.2.

2. Collect scenes (semantic models) around transitions
(functions).

3. Create RML rules using copy and paste from scenes.

4. Replace strings by RML variables in the RML rules
where needed.

5. Create state-machines with the RML rules as actions
in the state-machine transitions.

Acknowledgements This paper results from the Archi-
Mate project (http://archimate.telin.nl), a re-
search initiative that aims to provide concepts and tech-
niques to support architects in the visualization, and anal-
ysis of integrated architectures. The ArchiMate consortium
consists of ABN AMRO, Stichting Pensioenfonds ABP, the
Dutch Tax and Customs Administration, Ordina, Telemat-
ica Institute, CWI, University of Nijmegen, and LIACS.

References

[1] The Description Logic Handbook: Theory, Implementation
and Applications, Cambridge University Press, 2003.

[2] F.S. de Boer, M.M. Bonsangue, J. Jacob, A. Stam, and L. van
der Torre. A Logical Viewpoint on Architectures. In Proceed-
ings of the 8th IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2004), IEEE Computer
Society Press, 2004.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Model-
ing Language, Addison-Wesley, 1999.

[4] P. Chen. The Entity-Relationship Model–Toward a Unified
View of Data. ACM Transactions on Database Systems, Vol-
ume 1(1):9 - 36, 1976.

[5] H. Eertink, W. Janssen, P. Oude Luttighuis, W. Teeuw, and
C. Vissers. A business process design language. In Proceed-
ings of the 1st World Congress on Formal Methods, 1999.

[6] C. Gane and T. Sarson. Structured Systems Analysis: Tools
and Techniques. Prentice Hall, Englewood Cliffs, 1979.

[7] C.A.R. Hoare. Communicating Sequential Processes, Pren-
tice Hall, 1985.

[8] IEEE Computer Society. IEEE Std 1471-2000: IEEE Recom-
mended Practice for Architectural Description of Software-
Intensive Systems, Oct. 9, 2000.

[9] J. Jacob. The ASCII Markup Lan-
guage (AML) whitepaper. Available at
http://homepages.cwi.nl/̃ jacob/aml.

[10] J. Jacob. The Rule Markup Language: a tutorial. Available at
http://homepages.cwi.nl/̃ jacob/rml.

[11] H. Jonkers. et al.. Towards a Language for Coherent Enter-
prise Architecture Description. In M. Steen and B.R. Bryant
(eds.), Proceedings 7th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2003), IEEE
Computer Society Press, 2003.

[12] H. Jonkers et al.. Concepts for modelling enterprise architec-
tures. International Journal of Cooperative Information Sys-
tems, 2004.

[13] G. Kahn. The semantics of a simple language for parallel
programming. In IFIP 7th Congress. North Holland, Amster-
dam, 1974.

[14] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1992.

[15] World Wide Web Consortium. Extensible Markup Language
(XML). Available athttp://www.w3.org/XML/.

[16] J.A. Zachman, A Framework for Information Systems Ar-
chitecture, IBM Systems Journal, Vol. 26, No. 3, 1987.

11


