7 research outputs found

    Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration:A whole cell recording study in situ

    Get PDF
    Sympathetic preganglionic neurones (SPNs) convey sympathetic activity flowing from the CNS to the periphery to reach the target organs. Although previous in vivo and in vitro cell recording studies have explored their electrophysiological characteristics, it has not been possible to relate these characteristics to their roles in cardiorespiratory reflex integration. We used the working heart–brainstem preparation to make whole cell patch clamp recordings from T3–4 SPNs (n = 98). These SPNs were classified by their distinct responses to activation of the peripheral chemoreflex, diving response and arterial baroreflex, allowing the discrimination of muscle vasoconstrictor-like (MVC(like), 39%) from cutaneous vasoconstrictor-like (CVC(like), 28%) SPNs. The MVC(like) SPNs have higher baseline firing frequencies (2.52 ± 0.33 Hz vs. CVC(like) 1.34 ± 0.17 Hz, P = 0.007). The CVC(like) have longer after-hyperpolarisations (314 ± 36 ms vs. MVC(like) 191 ± 13 ms, P < 0.001) and lower input resistance (346 ± 49  MΩ vs. MVC(like) 496 ± 41 MΩ, P < 0.05). MVC(like) firing was respiratory-modulated with peak discharge in the late inspiratory/early expiratory phase and this activity was generated by both a tonic and respiratory-modulated barrage of synaptic events that were blocked by intrathecal kynurenate. In contrast, the activity of CVC(like) SPNs was underpinned by rhythmical membrane potential oscillations suggestive of gap junctional coupling. Thus, we have related the intrinsic electrophysiological properties of two classes of SPNs in situ to their roles in cardiorespiratory reflex integration and have shown that they deploy different cellular mechanisms that are likely to influence how they integrate and shape the distinctive sympathetic outputs

    Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats

    Get PDF
    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVC(like)) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVC(like) SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (I(A)). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of I(A) by 15–30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that I(A) acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension

    How sympathetic are your spinal cord circuits?

    Get PDF
    Sympathetic control of end organs relies on the activity of sympathetic preganglionic neurones (SPNs) within the spinal cord. These SPNs exhibit heterogeneity with respect to function, neurochemistry, location, descending inputs and patterns of activity. Part of this heterogeneity is bestowed by local spinal circuitry. Our understanding of the role of these local circuits, including the significance of connections between the SPNs themselves through specialized gap junctions, is patchy. This report focuses on interneurones and gap junctions within these circuits. Gap junctions play a role in sympathetic control; they are located on SPNs in the intermediolateral cell column. Mefloquine, a chemical that blocks these gap junctions, reduces local rhythmic activity in the spinal cord slice and disrupts autonomic control in the working heart-brainstem preparation. The role that these gap junctions may play in health and disease in adult animals remains to be elucidated fully. Presympathetic interneurones are located in laminae V, VII and X and the intermediolateral cell column; those in lamina X are GABAergic and directly inhibit SPNs. The GABAergic inputs onto SPNs exert their effects through activation of synaptic and extrasynaptic receptors, which stabilize the membrane at negative potentials. The GABAergic interneurones contribute to rhythmic patterns of activity that can be generated in the spinal cord, because bicuculline reduces network oscillatory activity. These studies indicate that local spinal cord circuitry is critical in enabling appropriate levels and patterning of activity in sympathetic outflow. We need to understand how these circuits may be harnessed in the situation of spinal cord injury

    Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats

    Get PDF
    Sympathetic activity displays rhythmic oscillations generated by brainsteminspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia). Pharmacogenetic inhibition of C1 neurons bilaterally resulted in reductions of their firing frequency and amplitude of inspiratory-related sympathetic activity in rats in normocapnia, hypercapnia or after CIH. In contrast, hypercapnia or hypoxia-induced enhanced expiratory-related sympathetic oscillations were unaffected by C1 neuronal inhibition. Inhibition of C1 neurons also resulted in a significant fall in arterial pressure and heart rate that was similar in magnitude between normotensive and CIH hypertensive rats, but basal arterial pressure in CIH rats remained higher compared to controls. C1 neurons play a key role in regulating inspiratory modulation of sympathetic activity and arterial pressure in both normotensive and CIH hypertensive rats, but they are not involved in the enhanced late-expiratory-related sympathetic activity triggered by activation of peripheral or central chemoreceptors
    corecore