832 research outputs found

    Deterministic Impartial Selection with Weights

    Full text link
    In the impartial selection problem, a subset of agents up to a fixed size kk among a group of nn is to be chosen based on votes cast by the agents themselves. A selection mechanism is impartial if no agent can influence its own chance of being selected by changing its vote. It is α\alpha-optimal if, for every instance, the ratio between the votes received by the selected subset is at least a fraction of α\alpha of the votes received by the subset of size kk with the highest number of votes. We study deterministic impartial mechanisms in a more general setting with arbitrarily weighted votes and provide the first approximation guarantee, roughly 1/2n/k1/\lceil 2n/k\rceil. When the number of agents to select is large enough compared to the total number of agents, this yields an improvement on the previously best known approximation ratio of 1/k1/k for the unweighted setting. We further show that our mechanism can be adapted to the impartial assignment problem, in which multiple sets of up to kk agents are to be selected, with a loss in the approximation ratio of 1/21/2.Comment: To appear in the Proceedings of the 19th Conference on Web and Internet Economics (WINE 2023

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Histaminylation of glutamine residues is a novel posttranslational modification implicated in G-protein signaling

    Get PDF
    Posttranslational modifications (PTM) have been shown to be essential for protein function and signaling. Here we report the identification of a novel modification, protein transfer of histamine, and provide evidence for its function in G protein signaling. Histamine, known as neurotransmitter and mediator of the inflammatory response, was found incorporated into mastocytoma proteins. Histaminylation was dependent on transglutaminase II. Mass spectrometry confirmed histamine modification of the small and heterotrimeric G proteins Cdc42, Galphao1 and Galphaq. The modification was specific for glutamine residues in the catalytic core, and triggered their constitutive activation. TGM2-mediated histaminylation is thus a novel PTM that functions in G protein signaling. Protein alphamonoaminylations, thus including histaminylation, serotonylation, dopaminylation and norepinephrinylation, hence emerge as a novel class of regulatory PTMs

    Cryo-EM structure of native human thyroglobulin

    Get PDF
    The thyroglobulin (TG) protein is essential to thyroid hormone synthesis, plays a vital role in the regulation of metabolism, development and growth and serves as intraglandular iodine storage. Its architecture is conserved among vertebrates. Synthesis of triiodothyronine (T; 3; ) and thyroxine (T; 4; ) hormones depends on the conformation, iodination and post-translational modification of TG. Although structural information is available on recombinant and deglycosylated endogenous human thyroglobulin (hTG) from patients with goiters, the structure of native, fully glycosylated hTG remained unknown. Here, we present the cryo-electron microscopy structure of native and fully glycosylated hTG from healthy thyroid glands to 3.2 Å resolution. The structure provides detailed information on hormonogenic and glycosylation sites. We employ liquid chromatography-mass spectrometry (LC-MS) to validate these findings as well as other post-translational modifications and proteolytic cleavage sites. Our results offer insights into thyroid hormonogenesis of native hTG and provide a fundamental understanding of clinically relevant mutations

    Impact of Radiotherapy, Chemotherapy and Surgery in Multimodal Treatment of Locally Advanced Esophageal Cancer

    Get PDF
    Objectives: It was the aim of this study to assess our institutional experience with definitive chemoradiation (CRT) versus induction chemotherapy followed by CRT with or without surgery (C-CRT/S) in esophageal cancer. Methods: We retrospectively analyzed 129 institutional patients with locally advanced esophageal cancer who had been treated by either CRT in analogy to the RTOG 8501 trial (n = 78) or C-CRT/S (n = 51). Results: The median, 2-and 5-year overall survival (OS) of the entire collective was 17.6 months, 42 and 24%, respectively, without a significant difference between the CRT and C-CRT/S groups. In C-CRT/S patients, surgery statistically improved the locoregional control (LRC) rates (2-year LRC 73.6 vs. 21.2%; p = 0.003); however, this was translated only into a trend towards improved OS (p = 0.084). The impact of escalated radiation doses (>= 60.0 vs. <60.0 Gy) on LRC was detectable only in T1-3 N0-1 M0 patients of the CRT group (2-year LRC 77.8 vs. 42.3%; p = 0.036). Conclusion: Definitive CRT and a trimodality approach including surgery (C-CRT/S) had a comparable outcome in this unselected patient collective. Surgery and higher radiation doses improve LRC rates in subgroups of patients, respectively, but without effect on OS. Copyright (C) 2012 S. Karger AG, Base

    Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light

    Get PDF
    We show how a medium, under the influece of a coherent control field which is resonant or close to resonance to an appropriate atomic transition, can lead to very strong asymmetries in the propagation of unpolarized light when the direction of the magnetic field is reversed. We show how EIT can be used to mimic effects occuring in natural systems and that EIT can produce very large asymmetries as we use electric dipole allowed transitions. Using density matrix calculations we present results for the breakdown of the magnetic field reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys. Rev.

    Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans

    Get PDF
    The diversity of sensory cilia on Caenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure–frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin II in these wing cilia. We propose that kinesin II is a “canonical” IFT motor, whereas OSM-3 is an “accessory” IFT motor, and that subtle changes in the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception
    corecore