18 research outputs found

    Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser.

    Get PDF
    Riboswitches are conformationally dynamic RNAs that regulate gene expression by binding specific small molecules. ZTP riboswitches bind the purine-biosynthetic intermediate 5-aminoimidazole-4-carboxamide riboside 5\u27-monophosphate (ZMP) and its triphosphorylated form (ZTP). Ligand binding to this riboswitch ultimately upregulates genes involved in folate and purine metabolism. Using an X-ray free-electron laser (XFEL), the room-temperature structure of the Fusobacterium ulcerans ZTP riboswitch bound to ZMP has now been determined at 4.1 Å resolution. This model, which was refined against a data set from ∌750 diffraction images (each from a single crystal), was found to be consistent with that previously obtained from data collected at 100 K using conventional synchrotron X-radiation. These experiments demonstrate the feasibility of time-resolved XFEL experiments to understand how the ZTP riboswitch accommodates cognate ligand binding

    Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination

    Get PDF
    Processive transcription antitermination requires the assembly of the complete antitermination complex, which is initiated by the formation of the ternary NusB–NusE–BoxA RNA complex. We have elucidated the crystal structure of this complex, demonstrating that the BoxA RNA is composed of 8 nt that are recognized by the NusB–NusE heterodimer. Functional biologic and biophysical data support the structural observations and establish the relative significance of key protein–protein and protein–RNA interactions. Further crystallographic investigation of a NusB–NusE–dsRNA complex reveals a heretofore unobserved dsRNA binding site contiguous with the BoxA binding site. We propose that the observed dsRNA represents BoxB RNA, as both single-stranded BoxA and double-stranded BoxB components are present in the classical lambda antitermination site. Combining these data with known interactions amongst antitermination factors suggests a specific model for the assembly of the complete antitermination complex

    Mix-and-Inject Serial Femtosecond Crystallography to Capture RNA Riboswitch Intermediates

    No full text
    Time-resolved structure determination of macromolecular conformations and ligand-bound intermediates is extremely challenging, particularly for RNA. With rapid technological advances in both microfluidic liquid injection and X-ray free electron lasers (XFEL), a new frontier has emerged in time-resolved crystallography whereby crystals can be mixed with ligand and then probed with X-rays (mix-and-inject) in real time and at room temperature. This chapter outlines the basic setup and procedures for mix-and-inject experiments for recording time-resolved crystallographic data of riboswitch RNA reaction states using serial femtosecond crystallography (SFX) and an XFEL

    Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser

    Get PDF
    Riboswitches are conformationally dynamic RNAs that regulate gene expression by binding specific small molecules. ZTP riboswitches bind the purine-biosynthetic intermediate 5-aminoimidazole-4-carboxamide riboside 5â€Č-monophosphate (ZMP) and its triphosphorylated form (ZTP). Ligand binding to this riboswitch ultimately upregulates genes involved in folate and purine metabolism. Using an X-ray free-electron laser (XFEL), the room-temperature structure of the Fusobacterium ulcerans ZTP riboswitch bound to ZMP has now been determined at 4.1 Å resolution. This model, which was refined against a data set from ∌750 diffraction images (each from a single crystal), was found to be consistent with that previously obtained from data collected at 100 K using conventional synchrotron X-radiation. These experiments demonstrate the feasibility of time-resolved XFEL experiments to understand how the ZTP riboswitch accommodates cognate ligand binding

    Co-crystal structure of the i Mango-III fluorescent RNA aptamer using an X-ray free-electron laser

    No full text
    Turn-on aptamers are in vitro-selected RNAs that bind to conditionally fluorescent small molecules and enhance their fluorescence. Upon binding TO1-biotin, the iMango-III aptamer achieves the largest fluorescence enhancement reported for turn-on aptamers (over 5000-fold). This aptamer was generated by structure-guided engineering and functional reselection of the parental aptamer Mango-III. Structures of both Mango-III and iMango-III have previously been determined by conventional cryocrystallography using synchrotron X-radiation. Using an X-ray free-electron laser (XFEL), the room-temperature iMango-III–TO1-biotin co-crystal structure has now been determined at 3.0 Å resolution. This structural model, which was refined against a data set of ∌1300 diffraction images (each from a single crystal), is largely consistent with the structures determined from single-crystal data sets collected at 100 K. This constitutes a technical benchmark on the way to XFEL pump–probe experiments on fluorescent RNA–small molecule complexes
    corecore